Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral]
By Zhicheng Huang*, Zhaoyang Zeng*, Yupan Huang*, Bei Liu, Dongmei Fu and Jianlong Fu
Introduction
This is the official implementation of the paper. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches.
Architecture
Release Progress
-
VQA Codebase
-
Pre-training Codebase
-
Other Downstream Tasks
Installation
conda create -n soho python=3.7
conda activate soho
git clone https://github.com/researchmm/soho.git
cd soho
bash tools/install.sh
Getting Started
-
Download the training, validation and test data
mkdir -p $SOHO_ROOT/data/coco cd $SOHO_ROOT/data/coco # need to update wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/train2014.zip wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/val2014.zip wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/test2015.zip wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/train_data_qa_caption_new_box.json wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/val_data_qa_caption_new_box.json wget https://vqasc.blob.core.windows.net/t-zhihuawork/code_10/MultiScalePretrain/data/coco/test_data_qa.json
-
Download the Pre-training models
cd $SOHO_ROOT mkdir -p $SOHO_ROOT/pretrained cd $SOHO_ROOT/pretrained # the following need to update wget
-
Training a VQA model
cd $SOHO_ROOT #use 8 GPUS to train the model bash tools/dist_train.sh configs/VQA/soho_res18_vqa.py 8
-
Evaluate a VQA model
bash tools/dist_test_vqa.sh configs/VQA/soho_res18_vqa.py 18 8
Citation
If you find this repo useful in your research, please consider citing the following papers:
@inproceedings{huang2021seeing,
title={Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning},
author={Huang, Zhicheng and Zeng, Zhaoyang and Huang, Yupan and Liu, Bei and Fu, Dongmei and Fu, Jianlong},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2021}
}
@article{huang2020pixel,
title={Pixel-bert: Aligning image pixels with text by deep multi-modal transformers},
author={Huang, Zhicheng and Zeng, Zhaoyang and Liu, Bei and Fu, Dongmei and Fu, Jianlong},
journal={arXiv preprint arXiv:2004.00849},
year={2020}
}
Acknowledgements
We would like to thank mmcv and mmdetection. Our commons lib is based on mmcv.