Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Overview

Meta-SparseINR

Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, Namhoon Lee, and Jinwoo Shin.

TL;DR: We develop a scalable method to learn sparse neural representations for a large set of signals.

Illustrations of (a) an implicit neural representation, (b) the standard pruning algorithm that prunes and retrains the model for each signal considered, and (c) the proposed Meta-SparseINR procedure to find a sparse initial INR, which can be trained further to fit each signal.

1. Requirements

conda create -n inrprune python=3.7
conda activate inrprune

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

pip install torchmeta
pip install imageio einops tensorboardX

Datasets

  • Download Imagenette and SDF file from the following page:
  • One should locate the dataset into /data folder

2. Training

Training option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}

Meta-SparseINR (ours)

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (magnitude pruning)
python main.py --exp metaprune --epoch 30000 --pruner MP --amount 0.2 --data <DATASET>

Random Pruning

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (random pruning)
python main.py --exp metaprune --epoch 30000 --pruner RP --amount 0.2 --data <DATASET>

Dense-Narrow

# Train dense model with a given width

# Shell script style
widthlist="230 206 184 164 148 132 118 106 94 84 76 68 60 54 48 44 38 34 32 28"
for width in $widthlist
do
    python main.py --exp meta_baseline --epoch 150000 --data <DATASET> --width $width --id width_$width
done

3. Evaluation

Evaluation option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}
  • <OPT_TYPE>: {default,two_step_sgd}, default denotes adam optimizer with 100 steps.

We assume all checkpoints are trained.

Meta-SparseINR (ours)

python eval.py --exp prune --pruner MP --data <DATASET> --opt_type <OPT_TYPE>

Baselines

# Random pruning
python eval.py --exp prune --pruner RP --data <DATASET> --opt_type <OPT_TYPE>

# Dense-Narrow
python eval.py --exp dense_narrow --data <DATASET> --opt_type <OPT_TYPE>

# MAML + One-Shot
python eval.py --exp one_shot --data <DATASET> --opt_type default

# MAML + IMP
python eval.py --exp imp --data <DATASET> --opt_type default

# Scratch
python eval.py --exp scratch --data <DATASET> --opt_type <OPT_TYPE>

4. Experimental Results

Citation

@inproceedings{lee2021meta,
  title={Meta-learning Sparse Implicit Neural Representations},
  author={Jaeho Lee and Jihoon Tack and Namhoon Lee and Jinwoo Shin},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Reference

You might also like...
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Owner
Jaeho Lee
Postdoctoral researcher at KAIST.
Jaeho Lee
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 8, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN ?? This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 3, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 9, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

null 697 Jan 6, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

null 114 Nov 30, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 3, 2023
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 6, 2022