I tried to run the commands in the run.sh
# Base 15
sleep 10
python tools/train_net.py --num-gpus 4 --config-file ./configs/PascalVOC-Detection/iOD/base_15.yaml SOLVER.IMS_PER_BATCH 8 SOLVER.BASE_LR 0.005
# 15 + 5
sleep 10
python tools/train_net.py --num-gpus 4 --config-file ./configs/PascalVOC-Detection/iOD/15_p_5.yaml SOLVER.IMS_PER_BATCH 8 SOLVER.BASE_LR 0.005
The first command is ok (base 15), but the second command went something wrong.
Here is my log:
(IODML) yupeng@compute01:~/IODML/iOD$
(IODML) yupeng@compute01:~/IODML/iOD$ python tools/train_net.py --num-gpus 1 --config-file ./configs/PascalVOC-Detection/iOD/15_p_5.yaml SOLVER
R.IMS_PER_BATCH 8 SOLVER.BASE_LR 0.005M[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C4
[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C[C
Command Line Args: Namespace(config_file='./configs/PascalVOC-Detection/iOD/15_p_5.yaml', dist_url='tcp://127.0.0.1:50252', eval_only=False, machine_rank=0, num_gpus=4, num_machines=1, opts=['SOLVER.IMS_PER_BATCH', '8', 'SOLVER.BASE_LR', '0.005'], resume=False)
[32m[01/22 20:49:55 detectron2]: [0mRank of current process: 0. World size: 4
[32m[01/22 20:49:55 detectron2]: [0mEnvironment info:
------------------------ --------------------------------------------------------------------
sys.platform linux
Python 3.6.13 |Anaconda, Inc.| (default, Jun 4 2021, 14:25:59) [GCC 7.5.0]
Numpy 1.19.5
Detectron2 Compiler GCC 7.5
Detectron2 CUDA Compiler 10.1
DETECTRON2_ENV_MODULE <not set>
PyTorch 1.3.0
PyTorch Debug Build False
torchvision 0.4.1
CUDA available True
GPU 0,1,2,3 GeForce RTX 2080 Ti
CUDA_HOME /home/yupeng/zzy/cuda-10.1
NVCC Cuda compilation tools, release 10.1, V10.1.105
Pillow 8.4.0
cv2 4.4.0
------------------------ --------------------------------------------------------------------
PyTorch built with:
- GCC 7.3
- Intel(R) Math Kernel Library Version 2019.0.4 Product Build 20190411 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v0.20.5 (Git Hash 0125f28c61c1f822fd48570b4c1066f96fcb9b2e)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_35,code=sm_35;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_50,code=compute_50
- CuDNN 7.6.3
- Magma 2.5.1
- Build settings: BLAS=MKL, BUILD_NAMEDTENSOR=OFF, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Wno-stringop-overflow, DISABLE_NUMA=1, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=True, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
[32m[01/22 20:49:55 detectron2]: [0mCommand line arguments: Namespace(config_file='./configs/PascalVOC-Detection/iOD/15_p_5.yaml', dist_url='tcp://127.0.0.1:50252', eval_only=False, machine_rank=0, num_gpus=4, num_machines=1, opts=['SOLVER.IMS_PER_BATCH', '8', 'SOLVER.BASE_LR', '0.005'], resume=False)
[32m[01/22 20:49:55 detectron2]: [0mContents of args.config_file=./configs/PascalVOC-Detection/iOD/15_p_5.yaml:
_BASE_: "../../Base-RCNN-C4.yaml"
MODEL:
WEIGHTS: "./output/first_15/model_final.pth"
BASE_WEIGHTS: "./output/first_15/model_final.pth"
MASK_ON: False
RESNETS:
DEPTH: 50
ROI_HEADS:
# Maximum number of foreground classes to expect
NUM_CLASSES: 20
# Flag to turn on/off Incremental Learning
LEARN_INCREMENTALLY: True
# Flag to select whether to learn base classes or iOD expanded classes
TRAIN_ON_BASE_CLASSES: False
# Number of base classes; these classes would be trained if TRAIN_ON_BASE_CLASSES is set to True
NUM_BASE_CLASSES: 15
# Number of novel classes; these classes would be trained if TRAIN_ON_BASE_CLASSES is set to False
NUM_NOVEL_CLASSES: 5
POSITIVE_FRACTION: 0.25
NMS_THRESH_TEST: 0.3
RPN:
FREEZE_WEIGHTS: False
ROI_BOX_HEAD:
CLS_AGNOSTIC_BBOX_REG: True
INPUT:
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TEST: 800
DATASETS:
TRAIN: ('voc_2007_trainval',)
TEST: ('voc_2007_test',)
SOLVER:
STEPS: (30000, 34000) # 21000, 22000
MAX_ITER: 20000 # 36000
WARMUP_ITERS: 100 # 100
LR_SCHEDULER_NAME: WarmupMultiStepLR
OUTPUT_DIR: ./output/15_p_5
VIS_PERIOD: 17000
DISTILL:
ENABLE: True
BACKBONE: True
RPN: False
ROI_HEADS: True
ONLY_FG_ROIS: False
# (1-LOSS_WEIGHT) (CLF / REG loss) + (LOSS_WEIGHT) ROI-Distillation
LOSS_WEIGHT: 0.2
# Warp Grad
WG:
ENABLE: True
TRAIN_WARP_AT_ITR_NO: 20
WARP_LAYERS: ("module.roi_heads.res5.2.conv3.weight",)
NUM_FEATURES_PER_CLASS: 100
NUM_IMAGES_PER_CLASS: 10
BATCH_SIZE: 2
USE_FEATURE_STORE: True
IMAGE_STORE_LOC: './15_p_5.pth'
SEED: 9999
VERSION: 2
[32m[01/22 20:49:55 detectron2]: [0mRunning with full config:
CUDNN_BENCHMARK: False
DATALOADER:
ASPECT_RATIO_GROUPING: True
FILTER_EMPTY_ANNOTATIONS: True
NUM_WORKERS: 4
REPEAT_THRESHOLD: 0.0
SAMPLER_TRAIN: TrainingSampler
DATASETS:
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
PROPOSAL_FILES_TEST: ()
PROPOSAL_FILES_TRAIN: ()
TEST: ('voc_2007_test',)
TRAIN: ('voc_2007_trainval',)
DISTILL:
BACKBONE: True
ENABLE: True
LOSS_WEIGHT: 0.2
MEAN_TEACHER: False
MEAN_TEACHER_ALPHA: 0.9
ONLY_FG_ROIS: False
ROI_HEADS: True
RPN: False
FINETUNE:
BATCH_SIZE: 2
ENABLE: False
MIN_NUM_IMG_PER_CLASS: -1
USE_IMAGE_STORE: False
GLOBAL:
HACK: 1.0
INPUT:
CROP:
ENABLED: False
SIZE: [0.9, 0.9]
TYPE: relative_range
FORMAT: BGR
MASK_FORMAT: polygon
MAX_SIZE_TEST: 1333
MAX_SIZE_TRAIN: 1333
MIN_SIZE_TEST: 800
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
MIN_SIZE_TRAIN_SAMPLING: choice
MODEL:
ANCHOR_GENERATOR:
ANGLES: [[-90, 0, 90]]
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
NAME: DefaultAnchorGenerator
OFFSET: 0.0
SIZES: [[32, 64, 128, 256, 512]]
BACKBONE:
FREEZE_AT: 2
NAME: build_resnet_backbone
BASE_WEIGHTS: ./output/first_15/model_final.pth
DEVICE: cuda
FPN:
FUSE_TYPE: sum
IN_FEATURES: []
NORM:
OUT_CHANNELS: 256
KEYPOINT_ON: False
LOAD_PROPOSALS: False
MASK_ON: False
META_ARCHITECTURE: GeneralizedRCNN
PANOPTIC_FPN:
COMBINE:
ENABLED: True
INSTANCES_CONFIDENCE_THRESH: 0.5
OVERLAP_THRESH: 0.5
STUFF_AREA_LIMIT: 4096
INSTANCE_LOSS_WEIGHT: 1.0
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [1.0, 1.0, 1.0]
PROPOSAL_GENERATOR:
MIN_SIZE: 0
NAME: RPN
RESNETS:
DEFORM_MODULATED: False
DEFORM_NUM_GROUPS: 1
DEFORM_ON_PER_STAGE: [False, False, False, False]
DEPTH: 50
NORM: FrozenBN
NUM_GROUPS: 1
OUT_FEATURES: ['res4']
RES2_OUT_CHANNELS: 256
RES5_DILATION: 1
STEM_OUT_CHANNELS: 64
STRIDE_IN_1X1: True
WIDTH_PER_GROUP: 64
RETINANET:
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
FOCAL_LOSS_ALPHA: 0.25
FOCAL_LOSS_GAMMA: 2.0
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
IOU_LABELS: [0, -1, 1]
IOU_THRESHOLDS: [0.4, 0.5]
NMS_THRESH_TEST: 0.5
NUM_CLASSES: 80
NUM_CONVS: 4
PRIOR_PROB: 0.01
SCORE_THRESH_TEST: 0.05
SMOOTH_L1_LOSS_BETA: 0.1
TOPK_CANDIDATES_TEST: 1000
ROI_BOX_CASCADE_HEAD:
BBOX_REG_WEIGHTS: ((10.0, 10.0, 5.0, 5.0), (20.0, 20.0, 10.0, 10.0), (30.0, 30.0, 15.0, 15.0))
IOUS: (0.5, 0.6, 0.7)
ROI_BOX_HEAD:
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
CLS_AGNOSTIC_BBOX_REG: True
CONV_DIM: 256
FC_DIM: 1024
NAME:
NORM:
NUM_CONV: 0
NUM_FC: 0
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
SMOOTH_L1_BETA: 0.0
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
IN_FEATURES: ['res4']
IOU_LABELS: [0, 1]
IOU_THRESHOLDS: [0.5]
LEARN_INCREMENTALLY: True
NAME: Res5ROIHeads
NMS_THRESH_TEST: 0.3
NUM_BASE_CLASSES: 15
NUM_CLASSES: 20
NUM_NOVEL_CLASSES: 5
POSITIVE_FRACTION: 0.25
PROPOSAL_APPEND_GT: True
SCORE_THRESH_TEST: 0.05
TRAIN_ON_BASE_CLASSES: False
ROI_KEYPOINT_HEAD:
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
LOSS_WEIGHT: 1.0
MIN_KEYPOINTS_PER_IMAGE: 1
NAME: KRCNNConvDeconvUpsampleHead
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
NUM_KEYPOINTS: 17
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
ROI_MASK_HEAD:
CLS_AGNOSTIC_MASK: False
CONV_DIM: 256
NAME: MaskRCNNConvUpsampleHead
NORM:
NUM_CONV: 0
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
RPN:
BATCH_SIZE_PER_IMAGE: 256
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
BOUNDARY_THRESH: -1
FREEZE_WEIGHTS: False
HEAD_NAME: StandardRPNHead
IN_FEATURES: ['res4']
IOU_LABELS: [0, -1, 1]
IOU_THRESHOLDS: [0.3, 0.7]
LOSS_WEIGHT: 1.0
NMS_THRESH: 0.7
POSITIVE_FRACTION: 0.5
POST_NMS_TOPK_TEST: 1000
POST_NMS_TOPK_TRAIN: 2000
PRE_NMS_TOPK_TEST: 6000
PRE_NMS_TOPK_TRAIN: 12000
SMOOTH_L1_BETA: 0.0
SEM_SEG_HEAD:
COMMON_STRIDE: 4
CONVS_DIM: 128
IGNORE_VALUE: 255
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
LOSS_WEIGHT: 1.0
NAME: SemSegFPNHead
NORM: GN
NUM_CLASSES: 54
WEIGHTS: ./output/first_15/model_final.pth
OUTPUT_DIR: ./output/15_p_5
SEED: 9999
SOLVER:
BASE_LR: 0.005
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 5000
EXPLICIT_LR: 0.0
GAMMA: 0.1
IMS_PER_BATCH: 8
LR_SCHEDULER_NAME: WarmupMultiStepLR
MAX_ITER: 20000
MOMENTUM: 0.9
STEPS: (30000, 34000)
WARMUP_FACTOR: 0.001
WARMUP_ITERS: 100
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0.0001
WEIGHT_DECAY_NORM: 0.0
TEST:
AUG:
ENABLED: False
FLIP: True
MAX_SIZE: 4000
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
DETECTIONS_PER_IMAGE: 100
EVAL_PERIOD: 0
EXPECTED_RESULTS: []
KEYPOINT_OKS_SIGMAS: []
PRECISE_BN:
ENABLED: False
NUM_ITER: 200
VERSION: 2
VIS_PERIOD: 17000
WG:
BATCH_SIZE: 2
ENABLE: True
IMAGE_STORE_LOC: ./15_p_5.pth
NUM_FEATURES_PER_CLASS: 100
NUM_IMAGES_PER_CLASS: 10
TRAIN_WARP: False
TRAIN_WARP_AT_ITR_NO: 20
USE_FEATURE_STORE: True
WARP_LAYERS: ('module.roi_heads.res5.2.conv3.weight',)
[32m[01/22 20:49:55 detectron2]: [0mFull config saved to /home/yupeng/IODML/iOD/output/15_p_5/config.yaml
[32m[01/22 20:49:56 d2.modeling.roi_heads.roi_heads]: [0mInvalid class range: []
[32m[01/22 20:49:56 d2.engine.defaults]: [0mModel:
GeneralizedRCNN(
(backbone): ResNet(
(stem): BasicStem(
(conv1): Conv2d(
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
)
(res2): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv1): Conv2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
)
(res3): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv1): Conv2d(
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(3): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
)
(res4): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
(conv1): Conv2d(
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(3): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(4): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(5): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
)
)
(proposal_generator): RPN(
(anchor_generator): DefaultAnchorGenerator(
(cell_anchors): BufferList()
)
(rpn_head): StandardRPNHead(
(conv): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(objectness_logits): Conv2d(1024, 15, kernel_size=(1, 1), stride=(1, 1))
(anchor_deltas): Conv2d(1024, 60, kernel_size=(1, 1), stride=(1, 1))
)
)
(roi_heads): Res5ROIHeads(
(pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
)
)
(res5): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
(conv1): Conv2d(
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
)
(box_predictor): FastRCNNOutputLayers(
(cls_score): Linear(in_features=2048, out_features=21, bias=True)
(bbox_pred): Linear(in_features=2048, out_features=4, bias=True)
)
)
)
[32m[01/22 20:49:57 d2.data.build]: [0mRemoved 0 images with no usable annotations. 5011 images left.
[32m[01/22 20:49:57 d2.data.build]: [0mDistribution of instances among all 20 categories:
[36m| category | #instances | category | #instances | category | #instances |
|:-----------:|:-------------|:-----------:|:-------------|:----------:|:-------------|
| aeroplane | 331 | bicycle | 418 | bird | 599 |
| boat | 398 | bottle | 634 | bus | 272 |
| car | 1644 | cat | 389 | chair | 1432 |
| cow | 356 | diningtable | 310 | dog | 538 |
| horse | 406 | motorbike | 390 | person | 5447 |
| pottedplant | 625 | sheep | 353 | sofa | 425 |
| train | 328 | tvmonitor | 367 | | |
| total | 15662 | | | | |[0m
[32m[01/22 20:49:57 d2.data.build]: [0mNumber of images: 5011
[32m[01/22 20:49:58 d2.data.build]: [0mDistribution of instances among all 20 categories:
[36m| category | #instances | category | #instances | category | #instances |
|:-----------:|:-------------|:-----------:|:-------------|:----------:|:-------------|
| aeroplane | 0 | bicycle | 0 | bird | 0 |
| boat | 0 | bottle | 0 | bus | 0 |
| car | 0 | cat | 0 | chair | 0 |
| cow | 0 | diningtable | 0 | dog | 0 |
| horse | 0 | motorbike | 0 | person | 0 |
| pottedplant | 625 | sheep | 353 | sofa | 425 |
| train | 328 | tvmonitor | 367 | | |
| total | 2098 | | | | |[0m
[32m[01/22 20:49:58 d2.data.build]: [0mNumber of images: 1152
[32m[01/22 20:49:58 d2.data.detection_utils]: [0mTransformGens used in training: [ResizeShortestEdge(short_edge_length=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()]
[32m[01/22 20:49:58 d2.data.build]: [0mUsing training sampler TrainingSampler
[32m[01/22 20:49:58 d2.engine.defaults]: [0mCreating base model for distillation.
[32m[01/22 20:49:58 d2.modeling.roi_heads.roi_heads]: [0mInvalid class range: []
[32m[01/22 20:49:58 d2.engine.defaults]: [0mModel:
GeneralizedRCNN(
(backbone): ResNet(
(stem): BasicStem(
(conv1): Conv2d(
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
)
(res2): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv1): Conv2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
)
(res3): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv1): Conv2d(
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(3): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
)
(res4): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
(conv1): Conv2d(
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(3): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(4): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(5): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
)
)
(proposal_generator): RPN(
(anchor_generator): DefaultAnchorGenerator(
(cell_anchors): BufferList()
)
(rpn_head): StandardRPNHead(
(conv): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(objectness_logits): Conv2d(1024, 15, kernel_size=(1, 1), stride=(1, 1))
(anchor_deltas): Conv2d(1024, 60, kernel_size=(1, 1), stride=(1, 1))
)
)
(roi_heads): Res5ROIHeads(
(pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
)
)
(res5): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
(conv1): Conv2d(
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
)
(box_predictor): FastRCNNOutputLayers(
(cls_score): Linear(in_features=2048, out_features=21, bias=True)
(bbox_pred): Linear(in_features=2048, out_features=4, bias=True)
)
)
)
Traceback (most recent call last):
File "tools/train_net.py", line 161, in <module>
args=(args,),
File "/home/yupeng/IODML/iOD/detectron2/engine/launch.py", line 49, in launch
daemon=False,
File "/home/yupeng/anaconda3/envs/IODML/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 171, in spawn
while not spawn_context.join():
File "/home/yupeng/anaconda3/envs/IODML/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 118, in join
raise Exception(msg)
Exception:
-- Process 2 terminated with the following error:
Traceback (most recent call last):
File "/home/yupeng/anaconda3/envs/IODML/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 19, in _wrap
fn(i, *args)
File "/home/yupeng/IODML/iOD/detectron2/engine/launch.py", line 84, in _distributed_worker
main_func(*args)
File "/home/yupeng/IODML/iOD/tools/train_net.py", line 143, in main
trainer = Trainer(cfg)
File "/home/yupeng/IODML/iOD/detectron2/engine/defaults.py", line 296, in __init__
self.image_store = torch.load(f)
File "/home/yupeng/anaconda3/envs/IODML/lib/python3.6/site-packages/torch/serialization.py", line 426, in load
return _load(f, map_location, pickle_module, **pickle_load_args)
File "/home/yupeng/anaconda3/envs/IODML/lib/python3.6/site-packages/torch/serialization.py", line 620, in _load
deserialized_objects[key]._set_from_file(f, offset, f_should_read_directly)
RuntimeError: unexpected EOF, expected 8 more bytes. The file might be corrupted.
(IODML) yupeng@compute01:~/IODML/iOD$
The f in "self.image_store = torch.load(f)" refers to "./15_p_5.pth"