Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Overview

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation

Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regularization | PyTorch Simple GAN Experiments | Paper


Simple Complex Left Complex Left Complex Left Complex Left

This repo contains code for our OroJaR Regularization that encourages disentanglement in neural networks. It efficiently optimizes the Jacobian vectors of your neural network with repect to each input dimension to be orthogonal, leading to disentanglement results.

This repo contains the following:

Adding the OroJaR to Your Code

We provide portable implementations of the OroJaR that you can easily add to your projects.

Adding the OroJaR to your own code is very simple:

from orojar_pytorch import orojar

net = MyNeuralNet()
input = sample_input()
loss = orojar(G=net, z=input)
loss.backward()

Getting Started

This section and below are only needed if you want to visualize/evaluate/train with our code and models. For using the OroJaR in your own code, you can copy one of the files mentioned in the above section.

Both the TensorFlow and PyTorch codebases are tested with Linux on NVIDIA GPUs. You need at least Python 3.6. To get started, download this repo:

git clone https://github.com/csyxwei/OroJaR.git
cd OroJaR

Then, set-up your environment. You can use the environment.yml file to set-up a Conda environment:

conda env create -f environment.yml
conda activate orojar

If you opt to use your environment, we recommend using TensorFlow 1.14.0 and PyTorch >= 1.6.0. Now you're all set-up.

TensorFlow ProgressiveGAN Regularization Experiments

PyTorch BigGAN Direction Discovery Experiments

Other Experiments with Simple GAN

Citation

If our code aided your research, please cite our paper:

@inproceedings{wei2021orojar,
  title={Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation},
  author={Wei, Yuxiang and Shi, Yupeng and Liu, Xiao and Ji, Zhilong and Gao, Yuan and Wu, Zhongqin and Zuo, Wangmeng},
  booktitle={Proceedings of International Conference on Computer Vision (ICCV)},
  year={2021}
}
You might also like...
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

 Video Autoencoder: self-supervised disentanglement of 3D structure and motion
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Comments
  • Upgrade to Cog version 0.1

    Upgrade to Cog version 0.1

    The new version of Cog improves the Python API, along with several other changes.

    This PR upgrades OroJaR to Cog version >= 0.1. I have already pushed this to Replicate for you, so you don't need to do anything for the demo to keep working: https://replicate.com/csyxwei/orojar

    opened by andreasjansson 0
Owner
Yuxiang Wei
Miracles happen every day.
Yuxiang Wei
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis ?? A more detailed re

Lincedo Lab 4 Jun 9, 2021
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

null 42 Nov 24, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

null 364 Dec 14, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 5, 2023
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great importance. We propose a novel orthogonal over-parameterized training (OPT) framework that can provably minimize the hyperspherical energy which characterizes the diversity of neurons on a hypersphere. See our previous work -- MHE for an in-depth introduction.

Weiyang Liu 11 Apr 18, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) ?? [Paper] ?? [Webpage] ?? [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022