Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization
Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma
Dependency
The code is built with following libraries:
- PyTorch 1.8
Training
The whole HAR training pipeline can be done in the following three steps:
- To estimate the statistics through a pretrain step
python cifar_hetero_est.py --mislabel_type hetero --gpu 0 --split 0
- To calculate the weights for regularization
python weight_est.py --statspath ./log/estimate_cifar10_resnet32_hetero_0.5_0_example/stats0.pkl
- Finally train a model from the scratch
python cifar_train.py --dataset cifar10 --rand-number 0 --mislabel_type hetero --imb_type None --gpu 0 --reg_weight 10 --exp_str example --reg_path ./data/cifar10_example_weights.npy
Reference
If you find our paper and repo useful, please cite as
@inproceedings{cao2020heteroskedastic,
title={Heteroskedastic and imbalanced deep learning with adaptive regularization},
author={Cao, Kaidi and Chen, Yining and Lu, Junwei and Arechiga, Nikos and Gaidon, Adrien and Ma, Tengyu},
booktitle={International Conference on Learning Representations},
year={2021}
}