115 Repositories
Python normalization-techniques Libraries
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.
NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne
This repository consists of a complete guide on natural language processing (NLP) in Python where we'll learn various techniques for implementing NLP including parsing & text processing and understand how to use NLP for text feature engineering.
Python_Natural_Language_Processing This repository contains tutorials on important topics related to Natural Language Processing (NPL). No. Name 01 01
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.
Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow
Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.
A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang
The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.
Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak
Crypto Portfolio Clustering with and without optimization techniques (elbow method, PCA).
Crypto Portfolio Clustering Crypto Portfolio Clustering with and without optimization techniques (elbow method, PCA). Analysis This is an anlysis of c
Text Normalization(文本正则化)
Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
An Empirical Review of Optimization Techniques for Quantum Variational Circuits
QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"
FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor
Object classification with basic computer vision techniques
naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi
Learn Basic to advanced level Data visualisation techniques from this Repository
Data visualisation Hey, You can learn Basic to advanced level Data visualisation techniques from this Repository. Data visualization is the graphic re
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches
A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches
Dynamic Token Normalization Improves Vision Transformers
Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T
Machine Learning Techniques using python.
👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.
Learn Python tips, tools, and techniques in around 5 minutes each.
Python shorts Learn Python tips, tools, and techniques in around 5 minutes each. Watch on YouTube Subscribe on YouTube to keep up with all the videos.
BERN2: an advanced neural biomedical namedentity recognition and normalization tool
BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by
A python tutorial on bayesian modeling techniques (PyMC3)
Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t
Weight estimation in CT by multi atlas techniques
maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model
BERN2: an advanced neural biomedical namedentity recognition and normalization tool
BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets
HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques
Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)
U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo
BERN2: an advanced neural biomedical namedentity recognition and normalization tool
BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.
Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.
This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)
Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag
Advanced Digital Envelope System Using Cryptography Techniques (Encryption & Decryption)
Advanced-Digital-Envelope-System Advanced Digital Envelope System Using Cryptography Encryption Techniques The digital envelope system is the techniqu
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.
Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.
An executor that performs standard pre-processing and normalization on images.
An executor that performs standard pre-processing and normalization on images.
DaProfiler allows you to get emails, social medias, adresses, works and more on your target using web scraping and google dorking techniques
DaProfiler allows you to get emails, social medias, adresses, works and more on your target using web scraping and google dorking techniques, based in France Only. The particularity of this program is its ability to find your target's e-mail adresses.
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.
Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques
Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener
🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.
Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.
Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion
Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation
NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.
Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.
Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N
AdaDM: Enabling Normalization for Image Super-Resolution
AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN
A dual benchmarking study of visual forgery and visual forensics techniques
A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can detect enemy player models in real time, during gameplay. Finally, a virtual input device will adjust the player's crosshair based on live detections for greater accuracy.
Conversational text Analysis using various NLP techniques
PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb
Iterative Normalization: Beyond Standardization towards Efficient Whitening
IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan
Conversational text Analysis using various NLP techniques
Conversational text Analysis using various NLP techniques
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"
THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)
tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.
cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut
Code for the paper "Improved Techniques for Training GANs"
Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "
kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer
Half Instance Normalization Network for Image Restoration
HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl
Convolutional neural network visualization techniques implemented in PyTorch.
This repository contains a number of convolutional neural network visualization techniques implemented in PyTorch.
When in Doubt: Improving Classification Performance with Alternating Normalization
When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely optimal running in ~15s to ~30s for search spaces as big as 10000000 nodes where a set of 18 actions could be performed at each node in the 3D Maze.
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper
SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi
MultiLexNorm 2021 competition system from ÚFAL
ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of
Create a Hangman Game using Python and all techniques of Python.
Hangman Game Created by Fernando Callasaca Game rules: Choose a word and if you guess it will appear completed. In case it is not the word then the ma
AugMax: Adversarial Composition of Random Augmentations for Robust Training
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data
We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for produce an anomaly score. Then, we merge these two score and produce merged anomaly score as a result.
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.
AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech
Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio
It is a system used to detect bone fractures. using techniques deep learning and image processing
MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'
pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more
PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques
About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.
pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.
Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques
The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.
Pytorch implementation of convolutional neural network visualization techniques
Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect
This python module is an easy-to-use port of the text normalization used in the paper "Not low-resource anymore: Aligner ensembling, batch filtering, and new datasets for Bengali-English machine translation". It is intended to be used for normalizing / cleaning Bengali and English text.
normalizer This python module is an easy-to-use port of the text normalization used in the paper "Not low-resource anymore: Aligner ensembling, batch
Classifying audio using Wavelet transform and deep learning
Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation
PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)
CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"
Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems
Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).
Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)
VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa
performing moving objects segmentation using image processing techniques with opencv and numpy
Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.
The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.
Stack BOF Protection Bypass Techniques
Stack Buffer Overflow - Protection Bypass Techniques
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization
RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,
Incident Response Process and Playbooks | Goal: Playbooks to be Mapped to MITRE Attack Techniques
PURPOSE OF PROJECT That this project will be created by the SOC/Incident Response Community Develop a Catalog of Incident Response Playbook for every
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".
One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep