211 Repositories
Python conditional-layer-normalization Libraries
📦 PyTorch based visualization package for generating layer-wise explanations for CNNs.
Explainable CNNs 📦 Flexible visualization package for generating layer-wise explanations for CNNs. It is a common notion that a Deep Learning model i
Flow control is the order in which statements or blocks of code are executed at runtime based on a condition. Learn Conditional statements, Iterative statements, and Transfer statements
03_Python_Flow_Control Introduction 👋 The control flow statements are an essential part of the Python programming language. A control flow statement
Sionna: An Open-Source Library for Next-Generation Physical Layer Research
Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )
Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.
ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022
cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs
BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch
Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c
Conditional Gradients For The Approximately Vanishing Ideal
Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro
Kglab - an abstraction layer in Python for building knowledge graphs
Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries – atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, pyarrow, etc.
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃
Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-
Some embedding layer implementation using ivy library
ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression
Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S
Text Normalization(文本正则化)
Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002
Python project that aims to discover CDP neighbors and map their Layer-2 topology within a shareable medium like Visio or Draw.io.
Python project that aims to discover CDP neighbors and map their Layer-2 topology within a shareable medium like Visio or Draw.io.
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.
Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift
This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"
FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor
Trainable Bilateral Filter Layer (PyTorch)
Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)
Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi
Collapse by Conditioning: Training Class-conditional GANs with Limited Data
Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm
This is a library for simulate probability theory problems specialy conditional probability
This is a library for simulate probability theory problems specialy conditional probability. It is also useful to create custom single or joint distribution with specific PMF or PDF to get probability table and genearte data based on probability function.
Dynamic Token Normalization Improves Vision Transformers
Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"
NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion
This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Research Part C. Under Review.
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN
Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i
IOT: Instance-wise Layer Reordering for Transformer Structures
Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning (TPAMI 2022 - in submission)
BERN2: an advanced neural biomedical namedentity recognition and normalization tool
BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by
BERN2: an advanced neural biomedical namedentity recognition and normalization tool
BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)
MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.
cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)
U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo
BERN2: an advanced neural biomedical namedentity recognition and normalization tool
BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization
ShortenURL-model - The model layer class for shorten url service
ShortenURL Model The model layer class for shorten URL service Usage Complete th
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments
NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"
CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs
GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)
Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks
Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag
VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM
VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks
GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.
MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen
Self Governing Neural Networks (SGNN): the Projection Layer
Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python
jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd
An executor that performs standard pre-processing and normalization on images.
An executor that performs standard pre-processing and normalization on images.
libvcs - abstraction layer for vcs, powers vcspull.
libvcs - abstraction layer for vcs, powers vcspull. Setup $ pip install libvcs Open up python: $ python # or for nice autocomplete and syntax highlig
Aircache is an open-source caching and security solution that can be integrated with most decoupled apps that use REST APIs for communicating.
AirCache Aircache is an open-source caching and security solution that can be integrated with most decoupled apps that use REST APIs for communicating
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).
The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS
Foundation Auth Proxy is an abstraction on Foundations' authentication layer and is used to authenticate requests to Atlas's REST API.
foundations-auth-proxy Setup By default the server runs on http://0.0.0.0:5558. This can be changed via the arguments. Arguments: '-H' or '--host': ho
Conditional Transformer Language Model for Controllable Generation
CTRL - A Conditional Transformer Language Model for Controllable Generation Authors: Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong,
🔎 Like Chardet. 🚀 Package for encoding & language detection. Charset detection.
Charset Detection, for Everyone 👋 The Real First Universal Charset Detector A library that helps you read text from an unknown charset encoding. Moti
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.
Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)
The core of a service layer that integrates with the Pyramid Web Framework.
pyramid_services The core of a service layer that integrates with the Pyramid Web Framework. pyramid_services defines a pattern and helper methods for
Python's Filesystem abstraction layer
PyFilesystem2 Python's Filesystem abstraction layer. Documentation Wiki API Documentation GitHub Repository Blog Introduction Think of PyFilesystem's
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation
NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)
OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L
A tensorflow implementation of an HMM layer
tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.
Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T
Noise Conditional Score Networks (NeurIPS 2019, Oral)
Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)
CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)
BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks
DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.
Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS
AdaDM: Enabling Normalization for Image Super-Resolution
AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"
Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.
FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".
Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)
SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.
Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)
DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.
Iterative Normalization: Beyond Standardization towards Efficient Whitening
IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan
Conditional Transformer Language Model for Controllable Generation
CTRL - A Conditional Transformer Language Model for Controllable Generation Authors: Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong,
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"
corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation
CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)
tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati
Image-to-image translation with conditional adversarial nets
pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat
Age Progression/Regression by Conditional Adversarial Autoencoder
Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre
Image De-raining Using a Conditional Generative Adversarial Network
Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this
Invertible conditional GANs for image editing
Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb
Learning Chinese Character style with conditional GAN
zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me
Recurrent Conditional Query Learning
Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "
kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi
A CV toolkit for my papers.
PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.
FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th
Half Instance Normalization Network for Image Restoration
HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t