Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

Overview

One-Shot Voice Conversion with Weight Adaptive Instance Normalization

image

By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain.

This repo is the official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

Audio samples are available at here.

Dependencies

  • python 3.6.0
  • pytorch 1.4.0
  • pyyaml 5.4.1
  • numpy 1.19.5
  • librosa 0.8.0
  • soundfile 0.10.2
  • tensorboardX 2.1

Preprocess

What you need to prepare first before running this project and how to prepare them

  • We use the ParallelWaveGAN as our vocoder, and VCTK as our data set.

  • If you wanna run our project, please install as the description of ParallelWaveGAN project first.

  • And then prepare all the mel-spectrogram data as ParallelWaveGAN do.

  • Prepare the speaker_used.json file by yourself, as ./data/80_train_speaker_used.json and ./data/fine_tune_speaker_used.json show.

  • Prepare the feats.scp file by runing ./convert_decode/convert_mel/get_scp.py .

Assume that your prepared mel-spectrograms are sorted in the files tree like:

├── p225
│   ├── p225_001-feats.npy
│   ├── p225_004-feats.npy
│   ├── p225_005-feats.npy
│   ......
├── p226
│   ├── p226_001-feats.npy
│   ├── p226_003-feats.npy
│   ├── p226_004-feats.npy
│   ......
├── p227
│   ......
├── p228
│   ......
│   ...
│   ...

Training

Run the pretrain stage by bash run_main.sh. We use 80 speakers of VCTK data set, and all utterances for each person.

Fine Tuning

Run the fine tune stage by bash run_fine_tune.sh. We use the other 10 speakers of VCTK data set, and only 1 utterance for each person used.

Inference

$ cd convert_decode/convert_mel
$ bash run_convert.sh

We generate one-shot voice conversion utterances between the 10 one-shot speakers , and use their other unseen utterances to perform one-shot voice conversion!

You might also like...
Official implementation of our paper
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

An official implementation of
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Official code implementation for
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

StyleGAN2 - Official TensorFlow Implementation
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

 Old Photo Restoration (Official PyTorch Implementation)
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Official implementation of
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

Official PyTorch implementation of Spatial Dependency Networks.
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

null 101 Nov 25, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

null 49 Nov 23, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes.

NVIDIA Research Projects 3.2k Dec 30, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

null 364 Dec 14, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022