iGEM_ParisBettencourt21
The official repository of iGEM Paris Bettencourt team's software tools.
Cell counting
There are two programs dedicated to the cell counting from the GFP images obtained from the experiments.
The first python program(gfpminicell_count.py) involves the following image processing techniques
- cleaning by border stripping
- gray-scaling
- gaussian blurring
- binary thresholding for preparing the processed image
The second program(cell_count.py) involves additional sharpening and thresholding techniques before gaussian blurring in order to capture the full contours of different sized images. So in sequence, the image goes through cleaning -> gray-scaling -> filter-convolved sharpening -> binary thresholding -> gaussian blurring -> final binary thresholding.
For the final counting, a procedure called contour mapping from OpenCV is used and the corresponding contours are counted as the number of cells seen on the processed images.
Example Images
There are two folders dedicated to store images for each of the two programs described above:
- Cells folder consists of sample images containing both mother and minicells and
- Minicells folder has Green Fluorescent Protein (GFP) images of only minicells
Running the program for cell counting
We need a basic python environment and preferably Miniconda or Anaconda as they help keep all the packages modular
-
In order to install the required packages for this program, run the following command that uses python3-pip:
pip3 install -r requirements.txt
-
For minicell counting (from images that has only minicells filtered), put them in the Minicells folder and run the following command
python gfpminicell_count.py -i GFPMinicells/3.png
-
For cell counting from images that includes both mother and minicells, put them in the Cells folder and run the following command in the main folder containing the .py file
python cell_count.py -i Cells/mgfp01.JPG
Note: Cells/mgfp01.JPG and Minicells/1.png are just sample images from the example folders, they could be replaced by GFP microscopic images with the corresponding relative path to the files
Interpreting results
The program outputs:
- Original border-cropped image: "Cleaned-original image"
- Final processed image on which the contours are mapped and counted: "Contour-ready image"
- The number of cells counted in the GFP image: "cell-count" (Also in the window-caption of the processed image) Example above: cell-count is 18
Another (Mini)cells count example
Image uploader
The image_uploading_bot.py script is dedicated to automated web navigation. It uses the selenium python extensions to
- Upload a set of images from a local folder to the igem servers
- Store the data of the uploaded files for accessible wiki editing
minicell producing culture models
There are two version of simulation for culture of minicell producing strains:
- version 1 is an algorithmic approach for low number of cells
- version 2 is another approach using approximation of partial differential equations
version 1
On the first version called minicell_bioproduction_model_v1.py different simulation where implementated according to different assumptions. The ouput are graphs of cell growing and minicell/mothercell counting