Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Overview

Filtration Curves for Graph Representation

This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation.

Dependencies

We used poetry to manage our dependencies. Once poetry is installed on your computer, navigate to the directory containing this code and type poetry install which will install all of the necessary dependencies (provided in the pyproject.toml file.

Data

We've provided sample data to work with to show how the method works out of the box, provided in the data folder. Our method works with graphs using igraph, and requires that the graphs have an edge weight (e.g., all weights in an igraph graph would be listed using the command graph.es['weight']. The BZR_MD dataset had edge weights already, and therefore we provided the original dataset; the MUTAG dataset did not have edge weights, so the data provided has edge weights added (using the Ricci curvature).

If your graphs do not have an edge weight, there are numerous ways to calculate them, which we detail in the paper. An example of how we added edge weights can be found in the preprocessing/label_edges.py file.

How to run this on your own dataset

To test out our method on your own dataset, create a directory in the data folder with your dataset name, and store each individual graph as an igraph graph (with edge weights) as its own pickle file. Then you can run the commands in the section below, replacing the name of the dataset with the name of the directory you created in the data folder.

Method and Expected Output

In our work, we used two main graph descriptor functions: one using the node label histogram and one tracking the amount of connected components. There is a file for each; but please note that the node label histogram requires that the graph has node labels.

To run the node label histogram filtration curve, navigate to the src folder and type the following command into the terminal:

$ poetry run python node_label_histogram_filtration_curve.py --dataset BZR_MD

This should return the following result in the command line: accuracy: 75.61 +- 1.13.

To run the connected components filtration curve (using the Ricci curvature), navigate to the src folder and type the following command into the terminal:

$ poetry run python connected_components_filtration_curve.py --dataset MUTAG

This should return the following result in the command line: accuracy: 87.31 +- 0.66.

Citing our work

Please use the following BibTeX citation when referencing our work:

@inproceedings{OBray21a,
    title        = {Filtration Curves for Graph Representation},
    author       = {O'Bray, Leslie and Rieck, Bastian and Borgwardt, Karsten},
    doi          = {10.1145/3447548.3467442},
    year         = 2021,
    booktitle    = {Proceedings of the 27th ACM SIGKDD International
                 Conference on Knowledge Discovery \& Data Mining~(KDD)},
    publisher    = {Association for Computing Machinery},
    address      = {New York, NY, USA},
    pubstate     = {inpress},
}
You might also like...
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Comments
  • 'weight' attribute of dataset

    'weight' attribute of dataset

    Thanks for your excellent works! Can you provide the raw data url of dataset? There is an attribute called 'weight' in MUTAG data, and it is different from TUDataset, how do you reweight it? I tried OllivierRicci method, but there answer is not as good as yours. Thanks again!

    opened by BlockChanZJ 1
Owner
Machine Learning and Computational Biology Lab
Machine Learning and Computational Biology Lab
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 5, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link ---> What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 9, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 9, 2022