Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

You might also like...
Minimal API for the COVID Booking System of the Offices at the UniPD Math Dep

Simple and easy to use python BOT for the COVID registration booking system of the math department @ unipd (torre archimede). This API creates an interface with the official website, with more useful functionalities.

PRAW, an acronym for "Python Reddit API Wrapper", is a python package that allows for simple access to Reddit's API.

PRAW: The Python Reddit API Wrapper PRAW, an acronym for "Python Reddit API Wrapper", is a Python package that allows for simple access to Reddit's AP

PRAW, an acronym for "Python Reddit API Wrapper", is a python package that allows for simple access to Reddit's API.

PRAW: The Python Reddit API Wrapper PRAW, an acronym for "Python Reddit API Wrapper", is a Python package that allows for simple access to Reddit's AP

alpaca-trade-api-python is a python library for the Alpaca Commission Free Trading API.

alpaca-trade-api-python is a python library for the Alpaca Commission Free Trading API. It allows rapid trading algo development easily, with support for both REST and streaming data interfaces

WhatsApp Api Python - This documentation aims to exemplify the use of Moorse Whatsapp API in Python
WhatsApp Api Python - This documentation aims to exemplify the use of Moorse Whatsapp API in Python

WhatsApp API Python ChatBot Este repositório contém uma aplicação que se utiliza

Discord bot built using Python. through this you can get information about the upcoming matches, scoreboard, live score
Discord bot built using Python. through this you can get information about the upcoming matches, scoreboard, live score

IPL-bot This is a Discord bot built using Python. through this you can get information about the upcoming matches, scoreboard, live score, and many mo

A python package that fetches tweets and user information in a very pythonic manner.

Tweetsy Tweetsy uses Twitter's underlying API to fetch user information and tweets and present it in a human-friendly way. What makes Tweetsy special

Information about the weather in a city written using Python
Information about the weather in a city written using Python

Information about the weather in a city Enter the desired city Climate information of the target city This program is written using Python programming

A simple Discord bot wrote with Python. Kizmeow let you track your NFT project and display some useful information
A simple Discord bot wrote with Python. Kizmeow let you track your NFT project and display some useful information

Kizmeow-OpenSea-and-Etherscan-Discord-Bot 中文版 | English Ver A Discord bot wrote with Python. Kizmeow let you track your NFT project and display some u

Owner
Dillan
Dillan
🚧 finCLI's own News API. No more limited API calls. Unlimited credible and latest information on BTC, Ethereum, Indian and Global Finance.

?? finCLI's own News API. No more limited API calls. Unlimited credible and latest information on BTC, Ethereum, Indian and Global Finance.

finCLI 5 Jun 16, 2022
twitter bot tha uses tweepy library class to connect to TWITTER API

TWITTER-BOT-tweepy- twitter bot that uses tweepy library class to connect to TWITTER API replies to mentions automatically and follows the tweet.autho

Muziwandile Nkomo 2 Jan 8, 2022
Student-Management-System-in-Python - Student Management System in Python

Student-Management-System-in-Python Student Management System in Python

G.Niruthian 3 Jan 1, 2022
Python bindings for Alexa Web Information Service (AWIS) API

Attention! This package is no longer maintained. See this ticket for more info. Wraps Alexa Web Information Service. Usage Making UrlInfo requests: ap

Atamert Ölçgen 51 Feb 12, 2022
Mushahid Ali 1 Dec 31, 2021
An API that allows you to get full information about TikTok videos

TikTok-API An API that allows you to get full information about TikTok videos without using any third party sources and only the TikTok API. ##API onl

FC 13 Dec 20, 2021
It connects to Telegram's API. It generates JSON files containing channel's data, including channel's information and posts.

It connects to Telegram's API. It generates JSON files containing channel's data, including channel's information and posts. You can search for a specific channel, or a set of channels provided in a text file (one channel per line.)

Esteban Ponce de Leon 75 Jan 2, 2023
Aula-API - a school system widely used in Denmark, as you can see and read about in the python file

Information : Hello, thank you for reading this first of all. This is a Aula-API

Binary.club 2 May 28, 2022
This repository are used to give class about AWS

AWSTraining This repository are used to give class about AWS by Marco Antonio Pereira Linkedin: https://www.linkedin.com/in/marcoap To see the types o

Marco Antonio Pereira 6 Nov 23, 2022
Python3 wrapper for the Sibyl System antispam API for telegram

SibylSystem-Py Python3 wrapper for the Sibyl System antispam API for telegram Installation pip install sibylsystem Usage >>> from SibylSystem import

Kaizoku 6 Nov 4, 2022