Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Overview

Installation

Run pip install mvtk.

Windows users: Until Jaxlib is supported on windows natively you will need to either use this library from you Linux subsystem or within a Docker container. Alternatively, you can build jaxlib from source.

Developers

Run pip install -e "mvtk[doc]".

The [doc] is used to install dependencies for building documentation.

Submodules

You can import:

  • mvtk.credibility for assessing credibility from sample size.
  • mvtk.interprenet for building interpretable neural nets.
  • mvtk.thresholding for adaptive thresholding.
  • mvtk.sobol for Sobol sensitivity analysis
  • mvtk.supervisor for divergence anlysis

Documentation

You can run make -C docs html on a Mac or make.bat -C docs html on a PC to just rebuild the docs. In this case, point your browser to docs/_build/html/index.html to view the homepage. If your browser was already pointing to documentation that you changed, you can refresh the page to see the changes.

You might also like...
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstractions that are catered towards ML workflows.

A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

A collection of neat and practical data science and machine learning projects
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Comments
  • Add a Gitter chat badge to README.md

    Add a Gitter chat badge to README.md

    FINRAOS/model-validation-toolkit now has a Chat Room on Gitter

    @kood1 has just created a chat room. You can visit it here: https://gitter.im/FINRAOS/model-validation-toolkit.

    This pull-request adds this badge to your README.md:

    Gitter

    If my aim is a little off, please let me know.

    Happy chatting.

    PS: Click here if you would prefer not to receive automatic pull-requests from Gitter in future.

    opened by gitter-badger 0
  • Compatibility Issues with new M-series chip on Mac

    Compatibility Issues with new M-series chip on Mac

    Hello,

    It looks like the model validation toolkit is not handling the new apple chips.

    RuntimeError: This version of jaxlib was built using AVX instructions, which your CPU and/or operating system do not support. You may be able work around this issue by building jaxlib from source.
    
    opened by yanbronshtein 2
Releases(v0.1.3)
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made this project as a requirement for an internship at Indian Servers. We are now making it open to contribution.

Krishna Priyatham Potluri 73 Dec 1, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 1, 2023
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model performance and availability.

Graphsignal 143 Dec 5, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

?? Interactive Machine Learning experiments: ??️models training + ??models demo

Oleksii Trekhleb 1.4k Jan 6, 2023
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 3, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

null 1 Feb 10, 2022
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validation, deployment and inference in production. Liminal provides a Domain Specific Language to build ML workflows on top of Apache Airflow.

The Apache Software Foundation 121 Dec 28, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 4, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 2, 2022