Advanced Signal Processing Notebooks and Tutorials

Overview

Advanced Digital Signal Processing
Notebooks and Tutorials

Prof. Dr. -Ing. Gerald Schuller
Jupyter Notebooks and Videos: Renato Profeta

Applied Media Systems Group
Technische Universität Ilmenau

Content

  • 01 Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Introduction
    • Quantization Error
    • Uniform Quantizers: Mir-Rise and Mid-Tread
    • Python Example: Uniform Quantizers
    • Python Example: Real-time Quantization Example
  • 02 Quantization - Signal to Noise Ratio (SNR):
    NBViewerBinderGoogle ColabYoutube

    • Signal to Noise Ratio (SNR)
    • SNR for Uniformly Distribution Signals
    • SNR for a Sine Wave
      • PDF of Time Series
  • 03 Quantization - Non-Uniform Quantization:
    NBViewerBinderGoogle ColabYoutube

    • Companding
      • µ-LAw and A-Law
      • Python Example: µ-LAw
      • Python Example: Real-Time Mid-Tread, Mid-Rise, µ-Law
  • 04r Quantization - Revision: Histogram, PDFs, Numerical Integration
    NBViewerBinderGoogle ColabYoutube

    • Histograms
    • Probability Density Functions
    • Numerical Integration
      • Riemann Sum
      • Trapezoidal Rule
  • 04 Quantization - Lloyd-Max Quantizer
    NBViewerBinderGoogle ColabYoutube

    • Lloyd-Max Quantizer
    • Lloyd-Max Quantizer Examples
  • 05 Quantization - Vector Quantizer (VQ) and Linde-Buzo-Gray (LBG) Algorithm
    NBViewerBinderGoogle ColabYoutube

    • Vector Quantization
    • Linde-Buzo-Gray Algorithm
    • Python Examples: Vector Quantization in an Encoder and Decoder
      • Iron Maiden - The Number of the Beast Introduction
      • Iron Maiden - Aces High Introduction
  • 06 Sampling - Sampling a Discrete Time Signal
    NBViewerBinderGoogle ColabYoutube

    • Sampling Introduction
    • Sampling a Discrete Time Signal
      • Downsampling
      • Upsampling
    • Python Example: Live Spectrogram: Sampling, LP Filtering
  • 07a The z-Transform - Theory and Properties
    NBViewerBinderGoogle ColabYoutube

    • The z-Transform Definition
    • Properties of the z-Transform
      • Shift Property
      • Linearity
      • Convolution
    • z-Transform Example: Exponential Decaying Sequence
  • 07b Filters - FIR and IIR Filters
    NBViewerBinderGoogle ColabYoutube

    • Filters: Linear Time-Invariant Systems
    • Finite Impulse Response (FIR) Filters
    • Infinite Impulse Response (IIR) Filters
    • Filter Example: Exponential Decaying Signal
      • Computing the Resulting Frequency Response
      • The z-Plane
      • Impulse Response
  • 08 Filters and Noble Identities
    NBViewerBinderGoogle ColabYoutube

    • Filter Design
      • Linear Phase and Signal Delay
      • General Phase and Groud Delay
      • Magnitude
    • Multirate Noble Identities
    • Polyphase Vectors
    • Python Example: Noble Identities and Polyphase Vectors
  • 09 Allpass Filters and Frequency Warping
    NBViewerBinderGoogle ColabYoutube

    • Allpass Filters
      • Allpass Filter as Fractional Delay
      • IIR Fractional Delay Filter Design
      • Simple IIR Allpass Filters
    • Frequency Warping Introduction
    • Frequency Warping and Bark Scale
  • 10 Frequency Warping and Minimum Phase Filters
    NBViewerBinderGoogle ColabYoutube

    • Frequency Warping
    • Minimum Phase Filters
      • Python Example
      • Impulse Response
      • Frequency Response
  • 11 Complex Signals and Filters, Hilbert Transform
    NBViewerBinderGoogle ColabYoutube

    • Complex Signals and Filters
    • Hilbert Transformer
      • Python Example
      • Impulse Response
      • Frequency Response
    • Example for the Measurement of the (Instantaneous) Amplitude
  • 12 Wiener Filters
    NBViewerBinderGoogle ColabYoutube

    • Wiener Filters
      • Python Example for Denoising Speech
      • Scipy Wiener Filter Example: Iron Maiden - The Number of the Beast Speech Intro
  • 13 Matched Filters
    NBViewerBinderGoogle ColabYoutube

    • Matched Filters
      • Python Example: Closed Form Solution
      • Convolutional Neural Network Implementation: PyTorch
  • 14 Prediction
    NBViewerBinderGoogle ColabYoutube

    • Prediction
      • Wiener-Hopf Closed Form Solution
      • Encoder-Decoder System
      • Neural Network Implementation - PyTorch
    • Linear Predictive Coding (LPC)
    • Least Mean Squares (LMS) Algorithm
      • LMS with Quantizer

YouTube Playlist

Youtube

Requirements

Please check the following files at the 'binder' folder:

  • environment.yml
  • postBuild

Note

Examples requiring a microphone will not work on remote environments such as Binder and Google Colab.

You might also like...
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers how to leverage our APIs for optimized deep learning inference in their applications.

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Owner
Guitars.AI
PhD Candidate at TU Ilmenau GUITAR INFORMATION RETRIEVAL
Guitars.AI
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

null 10 Dec 14, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 2, 2023
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 2, 2023
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

null 7 Jun 22, 2022