This is an official implementation of the High-Resolution Transformer for Dense Prediction.

Overview

High-Resolution Transformer for Dense Prediction

Introduction

This is the official implementation of High-Resolution Transformer (HRT). We present a High-Resolution Transformer (HRT) that learns high-resolution representations for dense prediction tasks, in contrast to the original Vision Transformer that produces low-resolution representations and has high memory and computational cost. We take advantage of the multi-resolution parallel design introduced in high-resolution convolutional networks (HRNet), along with local-window self-attention that performs self-attention over small non-overlapping image windows, for improving the memory and computation efficiency. In addition, we introduce a convolution into the FFN to exchange information across the disconnected image windows. We demonstrate the effectiveness of the High-Resolution Transformeron human pose estimation and semantic segmentation tasks.

  • The High-Resolution Transformer architecture:

teaser

Pose estimation

2d Human Pose Estimation

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Backbone Input Size AP AP50 AP75 ARM ARL AR ckpt log script
HRT-S 256x192 74.0% 90.2% 81.2% 70.4% 80.7% 79.4% ckpt log script
HRT-S 384x288 75.6% 90.3% 82.2% 71.6% 82.5% 80.7% ckpt log script
HRT-B 256x192 75.6% 90.8% 82.8% 71.7% 82.6% 80.8% ckpt log script
HRT-B 384x288 77.2% 91.0% 83.6% 73.2% 84.2% 82.0% ckpt log script

Results on COCO test-dev with detector having human AP of 56.4 on COCO val2017 dataset

Backbone Input Size AP AP50 AP75 ARM ARL AR ckpt log script
HRT-S 384x288 74.5% 92.3% 82.1% 70.7% 80.6% 79.8% ckpt log script
HRT-B 384x288 76.2% 92.7% 83.8% 72.5% 82.3% 81.2% ckpt log script

The models are first pre-trained on ImageNet-1K dataset, and then fine-tuned on COCO val2017 dataset.

Semantic segmentation

Cityscapes

Performance on the Cityscapes dataset. The models are trained and tested with input size of 512x1024 and 1024x2048 respectively.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 80000 8 Yes 80.0 81.0 log ckpt script
OCRNet HRT-B 7x7 Train Val 80000 8 Yes 81.4 82.0 log ckpt script
OCRNet HRT-B 15x15 Train Val 80000 8 Yes 81.9 82.6 log ckpt script

PASCAL-Context

The models are trained with the input size of 520x520, and tested with original size.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 60000 16 Yes 53.8 54.6 log ckpt script
OCRNet HRT-B 7x7 Train Val 60000 16 Yes 56.3 57.1 log ckpt script
OCRNet HRT-B 15x15 Train Val 60000 16 Yes 57.6 58.5 log ckpt script

COCO-Stuff

The models are trained with input size of 520x520, and tested with original size.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 60000 16 Yes 37.9 38.9 log ckpt script
OCRNet HRT-B 7x7 Train Val 60000 16 Yes 41.6 42.5 log ckpt script
OCRNet HRT-B 15x15 Train Val 60000 16 Yes 42.4 43.3 log ckpt script

ADE20K

The models are trained with input size of 520x520, and tested with original size. The results with window size 15x15 will be updated latter.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 150000 8 Yes 44.0 45.1 log ckpt script
OCRNet HRT-B 7x7 Train Val 150000 8 Yes 46.3 47.6 log ckpt script
OCRNet HRT-B 13x13 Train Val 150000 8 Yes 48.7 50.0 log ckpt script
OCRNet HRT-B 15x15 Train Val 150000 8 Yes - - - - -

Classification

Results on ImageNet-1K

Backbone acc@1 acc@5 #params FLOPs ckpt log script
HRT-T 78.6% 94.2% 8.0M 1.83G ckpt log script
HRT-S 81.2% 95.6% 13.5M 3.56G ckpt log script
HRT-B 82.8% 96.3% 50.3M 13.71G ckpt log script

Citation

If you find this project useful in your research, please consider cite:

@article{YuanFHZCW21,
  title={HRT: High-Resolution Transformer for Dense Prediction},
  author={Yuhui Yuan and Rao Fu and Lang Huang and Chao Zhang and Xilin Chen and Jingdong Wang},
  booktitle={arXiv},
  year={2021}
}

Acknowledgment

This project is developed based on the Swin-Transformer, openseg.pytorch, and mmpose.

git diff-index HEAD
git subtree add -P pose <url to sub-repo> <sub-repo branch>
Comments
  • Question about Local Self-Attention of your code

    Question about Local Self-Attention of your code

    Hi,I‘m very interested in your work about the Local Self-Attention and feature fusion in Transformer。But I have a doubt that Because the input image size for the image classification task in the source code is fixed, 224 or 384, in other words, the size is an integer multiple of 32. If the input size is not fixed, for example the detection task, the input is 800x1333, although the feature map can be divided into window size windows by using padding, but for the key_ padding_ mask, how should the mask be handled?

    The shape of attention weights map is [bs x H/7 x W/7, 49, 49], default there window size is 7, but the key padding mask shape is [1, HW], so how can I convert this mask to match the attention weights map。

    I sincerely hope you can give me some advice about this question. Thanks !

    opened by Huzhen757 4
  • about pose training speed

    about pose training speed

    the computation cost of HRF-s 256 isd about 2.8G flops. but when i training it, i found that it is significantly slower than the hrnet which have about 7.9 Gflops do you know how to solve it? thanks

    opened by maowayne123 4
  • Is the padding module wrong?

    Is the padding module wrong?

    Hello, I observes in the class PadBlock, the operation you have done is "n (qh ph) (qw pw) c -> (ph pw) (n qh qw) c" which you makes the padding group as batch dim. Therefore, it may cause a problem that you consider the pad-group wise attention across all batches. Do you think the permutation should be "n (qh ph) (qw pw) c -> (n ph pw) (qh qw) c"

    opened by UBCIntelliview 3
  • Need pre-trained model on ImageNet-1K

    Need pre-trained model on ImageNet-1K

    Hi, thanks for your work! I'm trying to train your model in custom config from scratch, but have not found any pre-trained model on ImageNet-1K. Do you plan to share these models?

    opened by WinstonDeng 2
  • undefined symbol: _Z13__THCudaCheck9cudaErrorPKci

    undefined symbol: _Z13__THCudaCheck9cudaErrorPKci

    ` FutureWarning, WARNING:torch.distributed.run:


    Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.


    Traceback (most recent call last): File "tools/train.py", line 168, in main() File "tools/train.py", line 122, in main env_info_dict = collect_env() File "/dataset/wh/wh_code/HRFormer-main/pose/mmpose/utils/collect_env.py", line 8, in collect_env env_info = collect_basic_env() File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/env.py", line 85, in collect_env from mmcv.ops import get_compiler_version, get_compiling_cuda_version File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/ops/init.py", line 1, in from .bbox import bbox_overlaps File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/ops/bbox.py", line 3, in ext_module = ext_loader.load_ext('_ext', ['bbox_overlaps']) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/ext_loader.py", line 12, in load_ext ext = importlib.import_module('mmcv.' + name) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) ImportError: /home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/_ext.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _Z13__THCudaCheck9cudaErrorPKci ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 42674) of binary: /home/celia/anaconda3/envs/open-mmlab/bin/python Traceback (most recent call last): File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 193, in main() File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 189, in main launch(args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 174, in launch run(args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/run.py", line 718, in run )(*cmd_args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 131, in call return launch_agent(self._config, self._entrypoint, list(args)) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 247, in launch_agent failures=result.failures, torch.distributed.elastic.multiprocessing.errors.ChildFailedError:

    tools/train.py FAILED

    Failures: [1]: time : 2022-10-24_10:03:43 host : omnisky rank : 1 (local_rank: 1) exitcode : 1 (pid: 42675) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [2]: time : 2022-10-24_10:03:43 host : omnisky rank : 2 (local_rank: 2) exitcode : 1 (pid: 42676) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [3]: time : 2022-10-24_10:03:43 host : omnisky rank : 3 (local_rank: 3) exitcode : 1 (pid: 42677) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html

    Root Cause (first observed failure): [0]: time : 2022-10-24_10:03:43 host : omnisky rank : 0 (local_rank: 0) exitcode : 1 (pid: 42674) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================`

    opened by yzew 1
  • Pretrained model for cityscapes

    Pretrained model for cityscapes

    Thanks for your great job. I have some trouble for reproducing the segmentation results of cityscapes. Then I check the log and find out it might be the problem of pretrained models. For now I use the ImageNet model released as pretrained. Can you release the pretrained model for cityscapes? Thanks a lot!

    opened by devillala 1
  • Cuda out of memory on resume (incl. fix)

    Cuda out of memory on resume (incl. fix)

    If ran out of memory with exact same params as in training (which worked). Loading the model first to cpu fixes the problem:

    resume_dict = torch.load(self.configer.get('network', 'resume'),map_location='cpu')

    maybe it helps somebody

    021-08-25 14:51:29,793 INFO [data_helper.py, 126] Input keys: ['img'] 2021-08-25 14:51:29,793 INFO [data_helper.py, 127] Target keys: ['labelmap'] Traceback (most recent call last): File "/home/rsa-key-20190908/HRFormer/seg/main.py", line 541, in model.train() File "/home/rsa-key-20190908/HRFormer/seg/segmentor/trainer.py", line 438, in train self.__train() File "/home/rsa-key-20190908/HRFormer/seg/segmentor/trainer.py", line 187, in __train outputs = self.seg_net(*inputs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 705, in forward output = self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/nets/hrt.py", line 117, in forward x = self.backbone(x) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/hrt_backbone.py", line 579, in forward y_list = self.stage3(x_list) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/hrt_backbone.py", line 282, in forward x[i] = self.branchesi File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/transformer_block.py", line 103, in forward x = x + self.drop_path(self.attn(self.norm1(x), H, W)) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_pool_attention.py", line 41, in forward out, _, _ = self.attn(x_permute, x_permute, x_permute, rpe=self.with_rpe, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_attention.py", line 116, in forward rpe=rpe, File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_attention.py", line 311, in multi_head_attention_forward ) + relative_position_bias.unsqueeze(0) RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 15.78 GiB total capacity; 6.64 GiB already allocated; 27.25 MiB free; 6.66 GiB reserved in total by PyTorch) Killing subprocess 6170

    opened by marcok 1
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • Cannot reproduce the test accuracy.

    Cannot reproduce the test accuracy.

    I tried to run the test of HRFormer on ImageNet-1k, but the test result was strange. The top-1 accuracy is about 2.0%

    Test command

    bash run_eval.sh hrt/hrt_tiny ~/Downloads/hrt_tiny_imagenet_pretrained_top1_786.pth  ~/data/imagenet
    

    Test output

    [2022-09-06 15:00:15 hrt_tiny](main.py 157): INFO number of params: 8035820
    All checkpoints founded in output/hrt_tiny/default: []
    [2022-09-06 15:00:15 hrt_tiny](main.py 184): INFO no checkpoint found in output/hrt_tiny/default, ignoring auto resume
    [2022-09-06 15:00:15 hrt_tiny](utils.py 21): INFO ==============> Resuming form /home/mzr/Downloads/hrt_tiny_imagenet_pretrained_top1_786.pth....................
    [2022-09-06 15:00:15 hrt_tiny](utils.py 31): INFO <All keys matched successfully>
    [2022-09-06 15:00:19 hrt_tiny](main.py 389): INFO Test: [0/391]	Time 4.122 (4.122)	Loss 8.9438 (8.9438)	Acc@1 2.344 (2.344)	Acc@5 4.688 (4.688)	Mem 2309MB
    [2022-09-06 15:00:29 hrt_tiny](main.py 389): INFO Test: [10/391]	Time 1.028 (1.279)	Loss 9.0749 (9.3455)	Acc@1 5.469 (2.486)	Acc@5 12.500 (7.031)	Mem 2309MB
    [2022-09-06 15:00:39 hrt_tiny](main.py 389): INFO Test: [20/391]	Time 1.027 (1.159)	Loss 9.9610 (9.3413)	Acc@1 0.781 (2.269)	Acc@5 4.688 (7.403)	Mem 2309MB
    [2022-09-06 15:00:49 hrt_tiny](main.py 389): INFO Test: [30/391]	Time 0.952 (1.103)	Loss 9.1598 (9.3309)	Acc@1 1.562 (2.293)	Acc@5 7.812 (7.359)	Mem 2309MB
    [2022-09-06 15:00:59 hrt_tiny](main.py 389): INFO Test: [40/391]	Time 0.951 (1.071)	Loss 9.3239 (9.3605)	Acc@1 0.781 (2.210)	Acc@5 4.688 (7.241)	Mem 2309MB
    [2022-09-06 15:01:09 hrt_tiny](main.py 389): INFO Test: [50/391]	Time 0.952 (1.049)	Loss 9.7051 (9.3650)	Acc@1 0.781 (2.191)	Acc@5 3.125 (7.200)	Mem 2309MB
    [2022-09-06 15:01:18 hrt_tiny](main.py 389): INFO Test: [60/391]	Time 0.951 (1.035)	Loss 9.5935 (9.3584)	Acc@1 1.562 (2.075)	Acc@5 7.812 (7.095)	Mem 2309MB
    ...
    

    The environment is brand new according to the install instruction, and the checkpoint is from https://github.com/HRNet/HRFormer/releases/tag/v1.0.0 . The only change is I disabled the amp.

    opened by mzr1996 0
  • cocostuff dataset validation bug

    cocostuff dataset validation bug

    in the segmentation folder -> segmentation_val/segmentor/tester.py line183

    def __relabel(self, label_map):
        height, width = label_map.shape
        label_dst = np.zeros((height, width), dtype=np.uint8)
        for i in range(self.configer.get('data', 'num_classes')):
            label_dst[label_map == i] = self.configer.get('data', 'label_list')[i]
      
        label_dst = np.array(label_dst, dtype=np.uint8)
      
        return label_dst
    
    if self.configer.exists('data', 'reduce_zero_label') and self.configer.get('data', 'reduce_zero_label'):
        label_img = label_img + 1
        label_img = label_img.astype(np.uint8)
    if self.configer.exists('data', 'label_list'):
        label_img_ = self.__relabel(label_img)
    else:
        label_img_ = label_img
    

    for cocostuff dataset (171 num classes), the origin predicted classes range from 0-170, after +1, it range from 1-171, then feed the label_img into __relabel() func. However, the loop in __relabel() range from 0-170, and the class 171 is not be operated.

    opened by chencheng1203 0
  • missing `mmpose/version.py`

    missing `mmpose/version.py`

    Hi,

    When I installed mmpose in this repo, I found there is no mmpose/version.py file.

        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/home/chenshoufa/workspace/HRFormer/pose/setup.py", line 105, in <module>
            version=get_version(),
          File "/home/chenshoufa/workspace/HRFormer/pose/setup.py", line 14, in get_version
            with open(version_file, 'r') as f:
        FileNotFoundError: [Errno 2] No such file or directory: 'mmpose/version.py'
    
    
    opened by ShoufaChen 2
  • Inference speed

    Inference speed

    What is the inference speed for e.g. semantic segmentation using 1024x1024 (referring to table 5)? Measured on GPU of your choice, just to get a feeling?

    opened by UrskaJ 0
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 2, 2023
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 5, 2023
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 6, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 2, 2023
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 5, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

null 35 Dec 6, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 7, 2023