Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Overview

Tokenizer

Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code en liste tokens. En l'occurence, contrairement à Flex and Yacc, la liste de token sera hiérarchisée et les tokens sont typés.

Qu'est-ce que c'est quoi dis donc un token ?

Un token, litteralement, c'est un jeton... Bof bof comme définition... Repprenons. Un token c'est une chaîne de caractères qui, ensemble, ont une signification. La chaîne de caractères qui forme un jeton est appelée Lexeme.

Et à quoi ça sert ?

La tokenization, c'est la prmière étape de la compilation ou de l'interprétation de la plupart des langages informatiques. Prenons Python par exemple, l'ordinateur ne sait absolument pas quoi faire avec le ficher qu'on lui donne, il le découpe donc pour avoir chacun des mots du code et pouvoir comprendre ce qu'on lui demande.


Exemple :

Du code python comme celui ci :

def hello(name) :
    print("Hello", name, "!")

sera convertit en YAML (ou n'importe quel autre langage de stockage de données comme JSON par exemple)

---
- {value: 'def', type: function.declaration}
- {value: 'hello', type: name.funciton.declaration}
- {value: '(', type: punctuation.begin}
- {value: 'name', type: parameter}
- {value: ')', type: punctuation.end}
- {value: ':', type: start.node}
- - {value: 'print', type: function}
  - {value: '(', type: punctuation.begin}
  - {value: '"Hello"', type: string}
  - {value: ',', type: separator}
  - {value: 'name', type: variable}
  - {value: ',', type: separator}
  - {value: '"!"', type: string}
  - {value: ')', type: punctuation.end}

Ici les tokens sont hiérarchisés et typés, c'est à dire que pour chaque nœud, une nouvelle liste est créée et pour chaque token, un attribut de type lui est appliqué.

Le typage des tokens peut être utile car le tokenizateur peut, avec une grammaire, faire un fichier de coloration syntaxique si l'on indique dans le type la couleur du token.


Spécifications

technologie outil
Langage Python
Version du langage 3.10
Gestionnaire des packets PIP
Gestionnaire d'environnement VirtualEnvironment
Environnement Windows 7/10
Librairie PyYaml, re

Installation

pip install -e git+https://github.com/Manolo-dev/tokenizer.git#egg=tokenizer


To do list

  • Grammaire
  • Classe Token
  • Classe Node
  • Main
  • Gestion des erreurs
  • Lecteur Yaml

Grammaire

Oui, il faut une grammaire à l'outil de grammaire ! Grammaception !

Corps

Le corps se compose d'au moins deux parties, variables, qui contient des expressions regexp, et les modules, dont main, seul module obligatoire.

  • variables

  • main

Module

main est le seul module qui est appelé sans qu'on l'incluse manuellement.

Les modules traitent le code et s'occupe de la grosse part du travail, ils peuvent utiliser les variables définies dans le module, dans un module encore ouvert (variables locale) ou dans variables.

Méthodes

  • include, inclut un module.

  • match, corresptond à un SI token correspond FAIRE, assigne à l'objet courant le token trouvé et éxécute le module donné (nommé ou non).

  • save, assigne un type à l'objet courant et enregistre le token dans la liste des tokens.

  • if, vérifie la condition donnée (liste de trois arguments, le premier l'opérateur, le second et le troisième les valeurs à tester). Exemple: if: ['==', ;a, ;b]

  • begin, crée un nœud et le débute.

  • end, ferme le nœud.

  • ignore, ne fait pas avancer le texte.

  • var, modifie les variables de la même manière que le module variables, la variable _ représente le token trouvé.

  • error, génère une erreur (équivalent au raise python)

  • print, affiche le texte donné dans la console.

Variables

Il y deux moyens d'utiliser les variables. Dans le cas d'une variable d'exemple appelée var, on peut faire :

  • ;var, seul dans l'élément.

  • {{var}}, peut-être placé n'importe où dans l'élément.

  • str:n, permet de supprimer n caractères à la chaîne str.

Exemple

variables:
  open: '\('
  close: '\)'
main:
  - match: ;open
    save: 'open'
    begin: # Ceci est un module non nommé
    - match: ;close
      save: 'close'
      end: 1
    - include: 'main'
  - match: '[^()]+' # pour éviter de prendre des parenthèses involontairement
    save: 'other'
  - match: ;close
    error: il y a une parenthèse de fermeture en trop

Cette grammaire fait de la parenthétisation simple, en simple, ça transforme ceci :

1 / (3 * (1 + 2))

en :

---
- {value: '1 / ', type: 'other'}
- {value: '(', type: 'open'}
- - {value: '3 * ', type: 'other'}
  - {value: '(', type: 'open'}
  - - {value: '1 + 2', type: 'other'}
  - {value: ')', type: 'close'}
- {value: ')', type: 'close'}
You might also like...
A Japanese tokenizer based on recurrent neural networks
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Owner
Manolo
Hi ! My name is Manolo, I am 18 years old. I have been programming since I was 11 or 12 (I can't quite remember) with BASIC CASIO. And i love code !
Manolo
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 5, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == '<unk>', ice

THUDM 42 Dec 27, 2022
Laboratory for Social Machines 84 Dec 20, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 1, 2023
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 4.8k Feb 18, 2021
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 718 Feb 18, 2021
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage >>> from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 6, 2023