File-based TF-IDF: Calculates keywords in a document, using a word corpus.

Overview

File-based TF-IDF

Calculates keywords in a document, using a word corpus.

Why?

Because I found myself with hundreds of plain text files, with no way to know what each one contains. I then recalled this thing called TF-IDF from university, but found no utility that operates on files. Hence, here we are.

How?

Basically, each word in the current document gets a score. The score increases each time the word it appears in this document, and decreases each time it appears in another document. The words with the highest scores will thus (theoretically) be the keywords.

Of course, this requires you to have many other documents (the corpus) to compare with. They should contain approximately the same language. For example, it makes sense to split chapters in a book and use those as the corpus. Use your senses.

Installation

Copy tfidf.py to some location on $PATH

Usage

usage: tfidf [-h] [--json] [--min-df MIN_DF] [-n N | --all] --input-document INPUT_DOCUMENT [corpus ...]

Calculates keywords in a document, using a word corpus.

positional arguments:
  corpus                corpus files (optional but highly reccommended)

options:
  -h, --help            show this help message and exit
  --json, -j            get output as json
  --min-df MIN_DF       if a word occurs less than this number of times in the corpus, it's not considered (default: 2)
  -n N                  limit output to this many words (default: 10)
  --all                 Don't limit the amount of words to output (default: false)
  --input-document INPUT_DOCUMENT, -i INPUT_DOCUMENT
                        document file to extract keywords from

Examples

To get the top 10 keywords for chapter 1 of Moby Dick:

# assume that *.txt matches all other chapters of mobydick
$ tfidf -n 10 -i mobydick_chapter1.txt *.txt

WORD             TF_IDF           TF               
passenger        0.003            0.002            
whenever         0.003            0.002            
money            0.003            0.002            
passengers       0.002            0.001            
purse            0.002            0.001            
me               0.002            0.011            
image            0.002            0.001            
hunks            0.002            0.001            
respectfully     0.002            0.001            
robust           0.002            0.001            
-----
num words in corpus: 208425
$ tfidf --all -j -i mobydick_chapter1.txt *.txt
[
    {
        "word": "lazarus",
        "tf_idf": 0.0052818627137794375,
        "tf": 0.0028169014084507044
    },
    {
        "word": "frost",
        "tf_idf": 0.004433890895007659,
        "tf": 0.0028169014084507044
    },
    {
        "word": "bedford",
        "tf_idf": 0.0037492766733561254,
        "tf": 0.0028169014084507044
    },
    ...
]

TF-IDF equations

t — term (word)
d — document (set of words)
corpus — (set of documents)
N — number of documents in corpus

tf(t,d) = count of t in d / number of words in d
df(t) = occurrence of t in N documents
idf(t) = N/df(t)

tf_idf(t, d) = tf(t, d) * idf(t)
You might also like...
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Idea is to build a model which will take keywords as inputs and generate sentences as outputs.
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

MILES is a multilingual text simplifier inspired by LSBert - A BERT-based lexical simplification approach proposed in 2018. Unlike LSBert, MILES uses the bert-base-multilingual-uncased model, as well as simple language-agnostic approaches to complex word identification (CWI) and candidate ranking.
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Document processing using transformers
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Owner
Jakob Lindskog
Jakob Lindskog
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 1, 2023
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 4.7k Feb 17, 2021
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 7, 2022
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 7, 2022
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

null 1 Nov 8, 2021
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

null 1 Nov 16, 2021
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could have been anything different from what's shown in this code.

p.katekomol 1 Jan 24, 2022