CT Based COVID 19 Diagnose by Image Processing and Deep Learning

Overview

CT-Based-COVID-19-Diagnose-by-Image-Processing-and-Deep-Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume. The first proposed deep learning method applied 3D-UNet model to undertake the segmentation of the lung area from the raw 3D CT volume, and the image processing method can also do this part. And the second deep learning method offers the 3D CNN model to classify the COVID-19 cases normal CT volume followed by another 3D CNN model to classify the COVID-19 cases into three categories according to the infectious area. Then, the last 3D U-Net model could segment the infectious area from the confirmed cases and the slice with largest infectious area would be selected. Finally, the diagnosis report will be generated based on the previous output. The similar operation can be conducted on the 2D CT image.

This is my undergraduate honour project in Hong Kong Baptist University, and thanks to my supervisor Prof. CHU Xiaowen

Project Poster

This is an image

System Architecture

This is an image

Diagnose Result

This is an image

You might also like...
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

COVID-Net Open Source Initiative
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Owner
想要去下個世紀走走~
null
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

null 2 Dec 26, 2021
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 4, 2021
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

null 41 Dec 12, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

null 2 Aug 5, 2022