Question answering app is used to answer for a user given question from user given text.

Overview

Question answering app

made-with-python Python streamlit terminal vscode

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace transformer pipeline and streamlit python packages.

Installation :-

To install all necessary requirement packages for the app ๐Ÿ‘‡

pip install -r requirements.txt

Packages Used :-

import streamlit as st
from transformers import pipeline

Demo GIF Image ๐Ÿ‘‡ :-

output_image

You might also like...
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

BERT-based Financial Question Answering System
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

๐Ÿš€ RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.
๐Ÿš€ RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

Reading Wikipedia to Answer Open-Domain Questions
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

Owner
Siva Prakash
I am a final year BCA student who more fascinated about data analysis and machine learning.
Siva Prakash
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! ?? What is this? At this repo, I'm

M. Yusuf Sarฤฑgรถz 13 Oct 10, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework for Question Answering & Neural search that enables you to ... ... ask questions in natural language and find gran

deepset 6.4k Jan 9, 2023
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.1k Feb 14, 2021
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 184 Feb 10, 2021
Knowledge Graph,Question Answering System๏ผŒๅŸบไบŽ็Ÿฅ่ฏ†ๅ›พ่ฐฑๅ’Œๅ‘้‡ๆฃ€็ดข็š„ๅŒป็–—่ฏŠๆ–ญ้—ฎ็ญ”็ณป็ปŸ

Knowledge Graph,Question Answering System๏ผŒๅŸบไบŽ็Ÿฅ่ฏ†ๅ›พ่ฐฑๅ’Œๅ‘้‡ๆฃ€็ดข็š„ๅŒป็–—่ฏŠๆ–ญ้—ฎ็ญ”็ณป็ปŸ

wangle 823 Dec 28, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)๋Š” ๋‹ค์–‘ํ•œ ์ฃผ์ œ์— ๋Œ€ํ•œ ๋ฌธ์„œ ์ง‘ํ•ฉ์œผ๋กœ๋ถ€ํ„ฐ ์ž์—ฐ์–ด ์งˆ์˜์— ๋Œ€ํ•œ ๋‹ต๋ณ€์„ ์ฐพ์•„์˜ค๋Š” task์ž…๋‹ˆ๋‹ค. ์ด๋•Œ ์‚ฌ์šฉ์ž ์งˆ์˜์— ๋‹ต๋ณ€ํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ์–ด์ง€๋Š” ์ง€๋ฌธ์ด ๋”ฐ๋กœ ์กด์žฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์‚ฌ์ „์— ๊ตฌ์ถ•๋˜์–ด์žˆ๋Š” Knowl

VUMBLEB 69 Nov 4, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.

Google Research Datasets 52 Jun 21, 2022