social humanoid robots with GPGPU and IoT

Overview

Social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT

Paper Authors

Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balakrishnan Prabhakaran, Yonas Tadesse

Initial design and development

UT Dallas senior design team

Sharon Choi, Manpreet Dhot, Mark Cordova, Luis Hall-Valdez, and Stephen Brooks

A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture

Currently, most social robots interact with their surroundings humans through sensors that are integral parts of the robots, which limits the usability of the sensors, human-robot interaction, and interchangeability. A wearable sensor garment that fits many robots is needed in many applications. This article presents an affordable wearable sensor vest, and an open-source software architecture with the Internet of Things (IoT) for social humanoid robots. The vest consists of touch, temperature, gesture, distance, vision sensors, and a wireless communication module. The IoT feature allows the robot to interact with humans locally and over the Internet. The designed architecture works for any social robot that has a general purpose graphics processing unit (GPGPU), I2C/SPI buses, Internet connection, and the Robotics Operating System (ROS). The modular design of this architecture enables developers to easily add/remove/update complex behaviors. The proposed software architecture provides IoT technology, GPGPU nodes, I2C and SPI bus mangers, audio-visual interaction nodes (speech to text, text to speech, and image understanding), and isolation between behavior nodes and other nodes. The proposed IoT solution consists of related nodes in the robot, a RESTful web service, and user interfaces. We used the HTTP protocol as a means of two-way communication with the social robot over the Internet. Developers can easily edit or add nodes in C, C++, and Python programming languages. Our architecture can be used for designing more sophisticated behaviors for social humanoid robots.

Cite as:

DOI

https://doi.org/10.1016/j.robot.2020.103536

IEEE

M. Jafarzadeh, S. Brooks, S. Yu, B. Prabhakaran, and Y. Tadesse, “A wearable sensor vest for social humanoid robots with GPGPU, IOT, and Modular Software Architecture,” Robotics and Autonomous Systems, vol. 139, p. 103536, 2021.

MLA

Jafarzadeh, Mohsen, et al. "A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture." Robotics and Autonomous Systems 139 (2021): 103536.

APA

Jafarzadeh, M., Brooks, S., Yu, S., Prabhakaran, B., & Tadesse, Y. (2021). A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture. Robotics and Autonomous Systems, 139, 103536.

Chicago

Jafarzadeh, Mohsen, Stephen Brooks, Shimeng Yu, Balakrishnan Prabhakaran, and Yonas Tadesse. "A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture." Robotics and Autonomous Systems 139 (2021): 103536.

Harvard

Jafarzadeh, M., Brooks, S., Yu, S., Prabhakaran, B. and Tadesse, Y., 2021. A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture. Robotics and Autonomous Systems, 139, p.103536.

Vancouver

Jafarzadeh M, Brooks S, Yu S, Prabhakaran B, Tadesse Y. A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture. Robotics and Autonomous Systems. 2021 May 1;139:103536.

Bibtex

@article{Jafarzadeh2021robots,
title = {A wearable sensor vest for social humanoid robots with GPGPU, IoT, and modular software architecture},
journal = {Robotics and Autonomous Systems},
volume = {139},
pages = {103536},
year = {2021},
issn = {0921-8890},
doi = {https://doi.org/10.1016/j.robot.2020.103536},
url = {https://www.sciencedirect.com/science/article/pii/S0921889019306323},
author = {Mohsen Jafarzadeh and Stephen Brooks and Shimeng Yu and Balakrishnan Prabhakaran and Yonas Tadesse},
}

License

Copyright (c) 2020 Mohsen Jafarzadeh. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
  3. All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed by Mohsen Jafarzadeh, Stephen Brooks, Sharon Choi, Manpreet Dhot, Mark Cordova, Luis Hall-Valdez, and Shimeng Yu.
  4. Neither the name of the Mohsen Jafarzadeh nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY MOHSEN JAFARZADEH "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MOHSEN JAFARZADEH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You might also like...
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

This was initially the repo for the project of PSYC626@USC of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Machine learning and Deep learning models, deploy on telegram (the best social media)
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

Tensorflow python implementation of
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

[ICCV'21] Official implementation for the paper  Social NCE: Contrastive Learning of Socially-aware Motion Representations
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

A Pytorch implementation of
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Real-Time Social Distance Monitoring tool using Computer Vision
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Owner
http://www.mohsen-jafarzadeh.com
null
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 7, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 8, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

null 20 Jul 18, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 9, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 4, 2023
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

null 356 Dec 23, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

null 4 Sep 23, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 3, 2023