Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

Overview

RaScaNet: Learning Tiny Models by Raster-Scanning Images

Deploying deep convolutional neural networks on ultra-low power systems is challenging, because the systems put a hard limit on the size of on-chip memory. To overcome this drawback, we propose a novel Raster-Scanning Network, named RaScaNet, inspired by raster-scanning in image sensors.

RaScaNet reads only a few rows of pixels at a time using a convolutional neural network and then sequentially learns the representation of the whole image using a recurrent neural network. The proposed method requires 15.9-24.3x smaller peak memory and 5.3-12.9x smaller weight memory than the state-of-the-art tiny models. The total memory usage of RaScaNet does not exceed 60 KB, in the VWW dataset with competitive accuracy.

Requirements

  • python 3.6
  • torch 1.7.0
  • torchvision 0.8.1
  • pycocotools 2.0.1
  • numpy 0.19.0
  • VWW dataset

Usage

For running the model, (only support vww dataset)

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar

With early termination,

  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=240 --model_path=checkpoint/rascanet_210x240.pth.tar --early_terminate=1
  • python test.py --dataset='vww' --dataset_path={dataset_path} --rsz_w=120 --model_path=checkpoint/rascanet_105x120.pth.tar --early_terminate=1

Currently, we do not provide the code for training.

Result

Model Weight Memory Peak Memory OPs Cnt. Accuracy
rascanet(210x240) 47.03 KB 7.92 KB 56.34 M 91.835%
rascanet(105x120) 31.77 KB 3.60 KB 9.71 M 88.100%

Citation

@InProceedings{Yoo_2021_CVPR,
    author    = {Yoo, Jaehyoung and Lee, Dongwook and Son, Changyong and Jung, Sangil and Yoo, ByungIn and Choi, Changkyu and Han, Jae-Joon and Han, Bohyung},
    title     = {RaScaNet: Learning Tiny Models by Raster-Scanning Images},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13673-13682}
}

License

Copyright (C) 2021 Samsung Electronics Co. LTD

This software is a property of Samsung Electronics.
No part of this software, either material or conceptual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system or translated into any human or computer language in any form by any means,
electronic, mechanical, manual or otherwise, or disclosed
to third parties without the express written permission of Samsung Electronics.
(Use of the Software is restricted to non-commercial, personal or academic, research purpose only)
You might also like...
Official pytorch implementation of Rainbow Memory (CVPR 2021)
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Implementation for Panoptic-PolarNet (CVPR 2021)
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Implementation of
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Official Pytorch implementation of
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Implementation of
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Implementation for
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

Pytorch implementation for
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Unofficial implementation of the Involution operation from CVPR 2021
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Official Implementation and Dataset of
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

Comments
  • How to obtain checkpoint?

    How to obtain checkpoint?

    Thanks for the code! However, when I want to run the model, I can't find ckeckpoint files. How can I obtain them? Also, if I try to reproduce results in the paper, how to set hyperparameters, like learning rate, batch size, weight decay, epochs etc? Looking forward to receiving your reply!

    opened by HLinChen 2
  • Training code

    Training code

    Hello Jaehyoung Yoo!

    First of all, thank you for your great work.

    Do you have a plan to release the training code?

    Moreover, could you offer the training details (e.g., batch size, learning rate) in order to reproduce your results?

    Thank you!

    opened by Shape-Kim 0
Owner
SAIT (Samsung Advanced Institute of Technology)
SAIT (Samsung Advanced Institute of Technology)
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 8, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 4, 2023
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

null 75 Dec 28, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 7, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022