Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

Overview

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas J. Guibas (* equal contribution)
SIGGRAPH Asia 2020
Project | arxiv

teaser

Citation

@article{Sung:2020,
  author = {Sung, Minhyuk and Jiang, Zhenyu and Achlioptas, Panos and Mitra, Niloy J. and Guibas, Leonidas J.},
  title = {DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces},
  Journal = {ACM Transactions on Graphics (Proc. of SIGGRAPH Asia)}, 
  year = {2020}
}

Introduction

Shape deformation is an important component in any geometry processing toolbox. The goal is to enable intuitive deformations of single or multiple shapes or to transfer example deformations to new shapes while preserving the plausibility of the deformed shape(s). Existing approaches assume access to point-level or part-level correspondence or establish them in a preprocessing phase, thus limiting the scope and generality of such approaches. We propose DeformSyncNet, a new approach that allows consistent and synchronized shape deformations without requiring explicit correspondence information. Technically, we achieve this by encoding deformations into a class-specific idealized latent space while decoding them into an individual, model-specific linear deformation action space, operating directly in 3D. The underlying encoding and decoding are performed by specialized (jointly trained) neural networks. By design, the inductive bias of our networks results in a deformation space with several desirable properties, such as path invariance across different deformation pathways, which are then also approximately preserved in real space. We qualitatively and quantitatively evaluate our framework against multiple alternative approaches and demonstrate improved performance.

Dependencies

Dataset Preparation

Download data

ShapeNet

Full raw data(train, val and test) can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ShapeNetFullData.zip file.

Prepared test data can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ShapeNetTestData.zip file.

ComplementMe

Full raw data(train, val and test) can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ComplementMeFullData.zip file

Prepared test data can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ComplementMeTestData.zip file.

Training

To train a model:

cd code
python train.py -opt option/train/train_DSN_(ShapeNet|ComplementMe)_{category}.yaml
  • The json file will be processed by option/parse.py. Please refer to this for more details.
  • Before running this code, please modify option files to your own configurations including:
    • proper root path for the data loader
    • saving frequency for models and states
    • other hyperparameters
    • loss function, etc.
  • During training, you can use Tesorboard to monitor the losses with tensorboard --logdir tb_logger/NAME_OF_YOUR_EXPERIMENT

Testing

To test trained model with metrics in Table 1(Fitting CD, MIOU, MMD-CD, Cov-CD) and Table2(Parallelogram consistency CD) (on ShapeNet) in the paper:

cd code
python test.py -opt path/to/train_option -test_data_root path/to/test_data -data_root path/to/full/data -out_dir path/to/save_dir -load_path path/to/model

To test trained model with metrics in Table 3(Fitting CD, MMD-CD, Cov-CD) (on ComplementMe) in the paper:

cd code
python test_ComplementMe.py -opt path/to/train_option -test_data_root path/to/test_data -out_dir path/to/save_dir -load_path path/to/model

It will load model weight from path/to/model. The default loading directory is experiment/{exp_name}/model/best_model.pth, which means when you test model after training, you can omit the -load_path. Generated shapes will be save in path/to/save_dir. The default save directory is result/ShapeNet/{category}.

Pretrained Models

ShapeNet

Airplane, Car, Chair, Lamp, Table

ComplementMe

Airplane, Car, Chair, Sofa, Table

You might also like...
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

Transfer-Learn is an open-source and well-documented library for Transfer Learning.
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.

Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Owner
Zhenyu Jiang
First-year Ph.D. at UTCS
Zhenyu Jiang
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 7, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

null 123 Dec 27, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 9, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 5, 2023
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 6, 2023
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 2, 2022
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022