Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Overview

Deep Text Search - AI Based Text Search & Recommendation System

Brain+Machine

Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Generic badge Generic badge Generic badge Generic badge Generic badge Downloads

Brain+Machine Creators

Nilesh Verma

Features

  • Faster Search.
  • High Accurate Text Recommendation and Search Output Result.
  • Best for Implementing on python based web application or APIs.
  • Best implementation for College students and freshers for project creation.
  • Applications are Text-based News, Social media post, E-commerce Product recommendation and other text-based platforms that want to implement text recommendation and search.

Installation

This library is compatible with both windows and Linux system you can just use PIP command to install this library on your system:

pip install DeepTextSearch

How To Use?

We have provided the Demo folder under the GitHub repository, you can find the example in both .py and .ipynb file. Following are the ideal flow of the code:

1. Importing the Important Classes

There are three important classes you need to load LoadData - for data loading, TextEmbedder - for embedding the text to data, TextSearch - For searching the text.

# Importing the proper classes
from DeepTextSearch import LoadData,TextEmbedder,TextSearch

2. Loading the Texts Data

For loading the Texts data we need to use the LoadData object, from there we can import text data as python list object from the CSV/Text file.

# Load data from CSV file
data = LoadData().from_csv("../your_file_name.csv")
# Load data from Text file
data = LoadData().from_text("../your_file_name.txt")

3. Embedding and Saving The File in Local Folder

For Embedding we are using state of the art multilingual Sentence Transformer Embedding, We also store the information of the Embedding for further use on the local path [embedding-data/] folder.

You can also use the load embedding() method in a TextEmbedder() class to load saved embedding data.

# To use Serching, we must first embed data. After that, we must save all of the data on the local path.
TextEmbedder().embed(corpus_list=data)

# Loading Embedding data
corpus_embedding = TextEmbedder().load_embedding()

3. Searching

We compare Cosian Similarity for searching and recommending, and then the corpus is sorted according to the similarity score:

# You must include the query text and the quantity of comparable texts you want to search for.
TextSearch().find_similar(query_text="What are the key features of Node.js?",top_n=10)

Complete Code

# Importing the proper classes
from DeepTextSearch import LoadData,TextEmbedder,TextSearch
# Load data from CSV file
data = LoadData().from_csv("../your_file_name.csv")
# To use Serching, we must first embed data. After that, we must save all of the data on the local path
TextEmbedder().embed(corpus_list=data)
# You must include the query text and the quantity of comparable texts you want to search for
TextSearch().find_similar(query_text="What are the key features of Node.js?",top_n=10)

License

MIT License

Copyright (c) 2021 Nilesh Verma

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Please do STAR the repository, if it helped you in anyway.

More cool features will be added in future. Feel free to give suggestions, report bugs and contribute.

You might also like...
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time. Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Releases(v_03)
Owner
Data Science Enthusiast & Digital Influencer
null
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

null 63 Oct 17, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle ?? PaddlePaddle Visual Transformers (PaddleViT or

null 1k Dec 28, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

null 43 Dec 12, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 8, 2023
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 3, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022