CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer
This is the official pytorch implementation of the CoTr:
Paper: CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer.
Requirements
CUDA 11.0
Python 3.7
Pytorch 1.7
Torchvision 0.8.2
Usage
0. Installation
- Install Pytorch1.7, nnUNet and CoTr as below
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
cd nnUNet
pip install -e .
cd CoTr_package
pip install -e .
1. Data Preparation
- Download BCV dataset
- Preprocess the BCV dataset according to nnU-Net.
- Training and Testing ID are in
data/splits_final.pkl
.
2. Training
cd CoTr_package/CoTr/run
- Run
nohup python run_training.py -gpu='0' -outpath='CoTr' 2>&1 &
for training.
3. Testing
- Run
nohup python run_training.py -gpu='0' -outpath='CoTr' -val --val_folder='validation_output' 2>&1 &
for validation.
4. Citation
If this code is helpful for your study, please cite:
@article{xie2021cotr,
title={CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation},
author={Xie, Yutong and Zhang, Jianpeng and Shen, Chunhua and Xia, Yong},
journal={arXiv preprint arXiv:2103.03024},
year={2021}
}
5. Acknowledgements
Part of codes are reused from the nnU-Net. Thanks to Fabian Isensee for the codes of nnU-Net.
Contact
Yutong Xie ([email protected])