Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Related tags

Deep Learning Gymjsp
Overview

Gymjsp

Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and the OR-Library which is a collection of test data sets for a variety of Operations Research (OR) problems(i.e., job shop schedule, portfolio optimisation and so on). In this Python library, we only use the job shop schedule instances in OR-Library.

Installation

To install the Gymjsp library, use pip install gymjsp.

Dependency

To use the Gymjsp library normally, you should install these Python libraries:

  • gym
  • networkx
  • plotly

API

The Gymjsp API's API models environments as simple Python env classes. Creating environment instances and interacting with them is very simple- here's an example using the "ft06" instance environment:

from gymjsp import BasicJsspEnv
env = BasicJsspEnv('ft06')

# env is created, now we can use it: 
for episode in range(10): 
    obs = env.reset()
    for step in range(50):
        action = env.action_space.sample()  # or given a custom model, action = policy(observation)
        nobs, reward, done, info = env.step(action)
        
env.render()

Release Notes

There used to be release notes for all the new Gymjsp versions here. New release notes are being moved to releases page on GitHub, like most other libraries do.

You might also like...
I tried to apply the CAM algorithm to YOLOv4 and it worked.
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Apply our monocular depth boosting to your own network!
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

Comments
  • about dispatching rules

    about dispatching rules

    What's the specific settings about dispatching rules result of the table3 in the paper, whether only set the schedule_circle = 8, my experiment ran out differently.

    opened by ffeiyu 0
Owner
null
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 7, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 7, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

null 259 Dec 26, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

null 121 Dec 1, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022