Adansons Base is a data management tool that organizes metadata of unstructured data and creates and organizes datasets.

Overview

Adansons Base Document

Product Concept

  • Adansons Base is a data management tool that organizes metadata of unstructured data and creates and organizes datasets.
  • It makes dataset creation more effective and helps find essential insights from training results and improves AI performance.

More detail ↓↓↓

See our product page: https://adansons.wraptas.site


0. Get Access Key

Type your email into the form below to join our slack and get the access key.

Invitation Form: https://share.hsforms.com/1KG8Hp2kwSjC6fjVwwlklZA8moen

1. Installation

Adansons Base contains Command Line Interface (CLI) and Python SDK, and you can install both with pip command.

pip install git+https://github.com/adansons/base

Note: if you want to use CLI in any directory, you have to install with the python globally installed on your computer.

2. Configuration

2.1 with CLI

when you run any Base CLI command for the first time, Base will ask your access key provided on our slack.

then, Base will verify the specified access key was correct.

if you don't have any access key, please see 0. Get Access Key.

this command will show you what projects you have

base list
Output
Welcome to Adansons Base!!

Let's start with your access key provided on our slack.

Please register your access_key: xxxxxxxxxx

Successfully configured as [email protected]

projects
========

2.2 Environment Variables

if you don’t want to configure interactively, you can use environment variables for configuration.

BASE_USER_ID is used for identification of users, this is the email address you submitted via our form.

export BASE_ACCESS_KEY=xxxxxxxxxx
export [email protected]

3. Tutorial 1: Organize meta data and Create dataset

let’s start Base tutorial with mnist dataset.

Step 0. prepare sample dataset

install dependencied for download dataset at first.

pip install pypng

then, download a script for mnist from our Base repository

curl -sSL https://raw.githubusercontent.com/adansons/base/main/download_mnist.py > download_mnist.py

run download-mnist script. you can specify any folder for downloading as last argument(default “~/dataset/mnist”). if you run this command on Windows, please replace it to windows path like “C:\dataset\mnist”

python3 ./download_mnist.py ~/dataset/mnist

Note: Base can link the data files if you put anywhere in local computer. So if you already downloaded mnist dataset, you can use it

after downloading, you can see data files in ~/dataset/mnist.

~
└── dataset
     └── mnist
          ├── train
          │ 	 ├── 0
          │ 	 │   ├── 1.png
          │ 	 │   ├── ...
          │ 	 │   └── 59987.png
          │ 	 ├── ...
          │ 	 └── 9
          └──	test
                ├── 0
                └── ...

Step 1. create new project

create mnist project with base new command.

base new mnist
Output
Your Project UID
----------------
abcdefghij0123456789

save Project UID in local file (~/.base/projects)

Base will issue a Project Unique ID and automatically save it in local file.

Step 2. import data files

after the step 0, you have many png image files on ”~/dataset/mnist” directory.

let’s upload meta data related their paths into mnist project with base import command.

base import mnist --directory ~/dataset/mnist --extension png --parse "{dataType}/{label}/{id}.png"

Note: if you changed download folder, please replace “~/dataset/mnist” in above command.

Output
Check datafiles...
found 70000 files with png extension.
Success!

Step 3. import external metadata files

if you have external meta data files, you can integrate them into existing project database with —-external-file option.

in this time, we use wrongImagesInMNISTTestset.csv published at Github by youkaichao.

https://github.com/youkaichao/mnist-wrong-test

this is the extra meta data which correct wrong label on mnist test dataset.

you can evaluate your model more strictly and correctly by using these extra meta data with Base.

download external csv

curl -SL https://raw.githubusercontent.com/youkaichao/mnist-wrong-test/master/wrongImagesInMNISTTestset.csv > ~/Downloads/wrongImagesInMNISTTestset.csv
base import mnist --external-file --path ~/Downloads/wrongImagesInMNISTTestset.csv -a dataType:test
Output
1 tables found!
now estimating the rule for table joining...

1 table joining rule was estimated!
Below table joining rule will be applied...

Rule no.1

        key 'index'     ->      connected to 'id' key on exist table
        key 'originalLabel'     ->      connected to 'label' key on exist table
        key 'correction'        ->      newly added

1 tables will be applied
Table 1 sample record:
        {'index': 8, 'originalLabel': 5, 'correction': '-1'}

Do you want to perform table join?
        Base will join tables with that rule described above.

        'y' will be accepted to approve.

        Enter a value: y
Success!

Step 4. filter and export dataset with CLI

now, we are ready to create dataset.

let’s pick up a part of data files, label is 0, 1, or 2 for training, from project mnist with base search command.

you can use --conditions option for magical search filter and --query option for advanced filter.

be careful that you may get so large output on your console without -s, --summary option.

(check search docs for more information).

base search mnist --conditions "train" --query "label in ['1','2','3']"

Note: in query option, you have to specified each component as string in list without space like “[’1’,’2’,’3’]”, when you want to operate in or not in query.

Output
18831 files
========
'/home/xxxx/dataset/mnist/train/1/42485.png'
...

Note: If you specify no conditions or query, Base will return whole data files.

Step 5. filter and export dataset with Python SDK

in python script, you can filter and export dataset easily and simply with Project class and Files class. (see SDK docs)

'/home/xxxx/dataset/mnist/0/12909.png' print(files[0].label) # this returns the value of attribute 'lable' of first `File` object # -> '0' dataset = Dataset(files, target_key="label", transform=preprocess_func) x_train, x_test, y_train, y_test = dataset.train_test_split(split_rate=0.2) # or use with torch import torch dataset = Dataset(files, target_key="label", transform=preprocess_func) loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)">
from base import Project, Dataset

# export dataset as you want to use
project = Project("mnist")
files = project.files(conditions="train", query=["label in ['1','2','3']"])

print(files[0])
# this returns path-like `File` object
# -> '/home/xxxx/dataset/mnist/0/12909.png'
print(files[0].label)
# this returns the value of attribute 'lable' of first `File` object
# -> '0'

dataset = Dataset(files, target_key="label", transform=preprocess_func)
x_train, x_test, y_train, y_test = dataset.train_test_split(split_rate=0.2)

# or use with torch
import torch

dataset = Dataset(files, target_key="label", transform=preprocess_func)
loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)

finally, let’s try one of most characteristic use cases on Adansons Base.

in the external file you imported in step.3, some mnist test data files are annotated as “-1” in correction column. this means that it is difficult to classify that files even for human.

so, you should exclude that files from your dataset to evaluate your AI models more properly.

9963 eval_dataset = Dataset(eval_files, target_key="label", transform=preprocess_func)">
# you can exclude files which have "-1" on "correction" with below code
eval_files = project.files(conditions="test", query=["correction != -1"])

print(len(eval_files))
# this returns the number of files matched with requested conditions or query
# -> 9963

eval_dataset = Dataset(eval_files, target_key="label", transform=preprocess_func)

4. API Reference

4.1 Command Reference

Command Reference

4.2 Python Reference

Python Reference

Comments
  • update README

    update README

    close #17

    Motivation

    Make the mnist tutorial code in the README easier to understand.

    Description of the changes

    Write concrete examples of preprocessing functions.

    Example

    documentation 
    opened by cv-dote 7
  • _Feature/#93

    _Feature/#93

    close #93

    Motivation

    Change error message contains just status code to more easy-to-understand one.

    Description of the changes

    • Changed the error message in archive_project() in project.py

    Example

    opened by cv-dote 2
  • can't operate Files which doesn't have condition attribute.

    can't operate Files which doesn't have condition attribute.

    Error messages, stack traces, or logs

    we can not operate Files which doesn't have condition attribute.

        413             files.reprtext = files.reprtext + other.reprtext
        414             files.expression += " + " + other.expression
    --> 415             files.conditions = self.conditions + "," + other.conditions
        416             files.query = sorted(
        417                 set([*(self.query), *(other.query)]),
    
    TypeError: can only concatenate str (not "NoneType") to str
    

    Steps to reproduce

    I will change the initial value of condition : None -> '' or stop concatenating conditions and query, because it is unnecessary.

    Additional context (optional)

    bug 
    opened by YU-SUKETAKAHASHI 2
  • Insert progress bar while base import

    Insert progress bar while base import

    Motivation

    Show the user how much more time it will take to import the data to decrease frustration.

    Description

    Show progress bar while importing dataset in CLI. The progress information can be % or anything else.

    Additional context (optional)

    enhancement 
    opened by sbilxxxx 2
  • Notebook for ImageNet Evaluation

    Notebook for ImageNet Evaluation

    close #80

    Motivation

    Reproduce the experiment to re-evaluate ImageNet excluding error data.

    Description of the changes

    • Notebook for ImageNet Evaluation
    • prepare.sh
    • error_data.csv

    Example

    opened by ShuntaroSuzuki 1
  • add parser.validate_parsing_rule

    add parser.validate_parsing_rule

    close #69

    Motivation

    When input a parsing_rule not including the pattern {XX}, an error should be printed, but "Success!"

    Description of the changes

    • add Parser.validate_parsing_rule
    • check parsing_rule is valid in Project.add_datafiles

    Example

    opened by ShuntaroSuzuki 1
  • Feature Request for `base search --query`

    Feature Request for `base search --query`

    Motivation

    When I try base search mnist --query "id <= 1200" command, now, they are evaluated in lexical order as str types, not int types. So, for example, data with id=10000 will also be obtained in this case.

    enhancement 
    opened by 31159piko-suke 1
  • operated Files object can not filter properly

    operated Files object can not filter properly

    Error messages, stack traces, or logs

    I concatenate FIles object.

    project = Project("glia")
    files1 = project.files(conditions="20220418", query=["hour >= 018"], sort_key='hour')
    files2 = project.files(conditions="20220419", sort_key='hour')
    files3 = project.files(conditions="20220420", query=["hour <= 009"], sort_key='hour')
    files = files1 + files2 + files3
    

    Then I filter the concatenated Files, but it is not work.

    filtered_files = files.filter(query=['hour > 020'])
    print(len(filtered_files))
    >>> 0
    

    The bug is caused by the .query attribute of the concatenated Files. Because the .query attributes of files1 and files3 are also concatenated, there is no File that satisfies these queries.

    print(files.query)
    >>>['hour >= 018', 'hour <= 009']
    

    Steps to reproduce

    ~~I think the concatenated Files should have the empty .query attribute.~~ ~~Files is already queried, so the elements itself has query information.~~ ~~Hence filtered Files don't have to remember its query.~~

    I will change not to concatenate queries in filter method. https://github.com/adansons/base/blob/dev/base/files.py#L222

    filtered_files.query = query + self.query
    

    filtered_files.query = query
    

    Additional context (optional)

    bug 
    opened by YU-SUKETAKAHASHI 1
  • mapping from string to integer does not to be working

    mapping from string to integer does not to be working

    The mapping from string to integer does not seem to be working in base Dataset class that creates convert_dict.

    ex)

    convert_dict={'8': 0, '1': 1, '6': 2, '9': 3, '5': 4, '4': 5, '7': 6, '2': 7, '0': 8, '3': 9}
    
    opened by 31159piko-suke 1
  • the responce of `base show` command is difficult to understand

    the responce of `base show` command is difficult to understand

    Motivation

    base show returns raw data about keys I imported. it is difficult to understand, and I want to summarize.

    kenichi@Higuchis-MacBook-Pro ~ % base show mnist
    projects mnist
    ===============
    {'LowerValue': '0', 'EditorList': ['[email protected]'], 'Creator': '[email protected]', 'ValueHash': '6dd1c6ef359fc0290897273dfee97dd6d1f277334b9a53f07056500409fd0f3a', 'LastEditor': '[email protected]', 'UpperValue': '59999', 'ValueType': 'str', 'CreatedTime': '1651429889.986235', 'LastModifiedTime': '1651430744.0796146', 'KeyHash': 'a56145270ce6b3bebd1dd012b73948677dd618d496488bc608a3cb43ce3547dd', 'KeyName': 'id', 'RecordedCount': 70000}
    {'LowerValue': '0', 'EditorList': ['[email protected]'], 'Creator': '[email protected]', 'ValueHash': '6dd1c6ef359fc0290897273dfee97dd6d1f277334b9a53f07056500409fd0f3a', 'LastEditor': '[email protected]', 'UpperValue': '59999', 'ValueType': 'int', 'CreatedTime': '1651429889.986235', 'LastModifiedTime': '1651430744.0796146', 'KeyHash': 'a56145270ce6b3bebd1dd012b73948677dd618d496488bc608a3cb43ce3547dd', 'KeyName': 'index', 'RecordedCount': 70000}
    {'LowerValue': '0or6', 'EditorList': ['[email protected]'], 'Creator': '[email protected]', 'ValueHash': '665c5c8dca33d1e21cbddcf524c7d8e19ec4b6b1576bbb04032bdedd8e79d95a', 'LastEditor': '[email protected]', 'UpperValue': '-1', 'ValueType': 'str', 'CreatedTime': '1651430744.0796146', 'LastModifiedTime': '1651430744.0796146', 'KeyHash': '34627e3242f2ca21f540951cb5376600aebba58675654dd5f61e860c6948bffa', 'KeyName': 'correction', 'RecordedCount': 74}
    {'LowerValue': '0', 'EditorList': ['[email protected]'], 'Creator': '[email protected]', 'ValueHash': '0c2fb8f0d59d60a0a5e524c7794d1cf091a377e5c0d3b2cf19324432562555e1', 'LastEditor': '[email protected]', 'UpperValue': '9', 'ValueType': 'str', 'CreatedTime': '1651429889.986235', 'LastModifiedTime': '1651430744.0796146', 'KeyHash': '1aca80e8b55c802f7b43740da2990e1b5735bbb323d93eb5ebda8395b04025e2', 'KeyName': 'label', 'RecordedCount': 70000}
    {'LowerValue': '0', 'EditorList': ['[email protected]'], 'Creator': '[email protected]', 'ValueHash': '0c2fb8f0d59d60a0a5e524c7794d1cf091a377e5c0d3b2cf19324432562555e1', 'LastEditor': '[email protected]', 'UpperValue': '9', 'ValueType': 'int', 'CreatedTime': '1651429889.986235', 'LastModifiedTime': '1651430744.0796146', 'KeyHash': '1aca80e8b55c802f7b43740da2990e1b5735bbb323d93eb5ebda8395b04025e2', 'KeyName': 'originalLabel', 'RecordedCount': 70000}
    {'LowerValue': 'test', 'EditorList': ['[email protected]'], 'Creator': '[email protected]', 'ValueHash': '0e546bb01e2c9a9d1c388fca8ce3fabdde16084aee10c58becd4767d39f62ab7', 'LastEditor': '[email protected]', 'UpperValue': 'train', 'ValueType': 'str', 'CreatedTime': '1651429889.986235', 'LastModifiedTime': '1651430744.0796146', 'KeyHash': '9c98c4cbd490df10e7dc42f441c72ef835e3719d147241e32b962a6ff8c1f49d', 'KeyName': 'dataType', 'RecordedCount': 70000}
    
    enhancement 
    opened by kenichihiguchi 1
  • No support for Japanese external files.

    No support for Japanese external files.

    Before using the post method, we should encode the data to utf8 like below at project.py https://github.com/adansons/base/blob/955d5edff5666776127e049bf4c7ebc9444391b2/base/project.py

    data = data.encode('utf-8')
    res = requests.post(url, json.dumps(data), headers=HEADER)
    
    bug 
    opened by ynntech 1
  •  Feature Request for `base search --condition ` command

    Feature Request for `base search --condition ` command

    Motivation

    When I type a label that is not correct with base search --condition something command, now, we got all of the file information. I want to get the returns like there is no value "something"

    Additional context (optional)

    enhancement good first issue 
    opened by ynntech 0
  • Explain behavior when multiple `--query` given in `base search`

    Explain behavior when multiple `--query` given in `base search`

    Motivation

    Description

    When you give multiple --query in base search, you'll get the intersection of given queries as a return.
    (E.g. : base search mnist --conditions "test" --query "correction == -1" --query "label in ['1','2','3']" Add description about this on the docs

    Additional context (optional)

    documentation 
    opened by kuriyan1204 0
Releases(v0.1.2)
  • v0.1.2(Jun 11, 2022)

    What's Changed

    improve features

    • able to specify original table join rule with base import --external-file command
      • if the estimated rule is not correct, you can select "m" to download a definition YML file
    • add base import --external-file --extract suboption to get structured and extracted table as CSV
    • add base import --external-file --estimate-rule suboption to preview estimated table join rule
    • able to filter missing values with the query "Key is None"

    fix bugs

    • CSV export error with base search [PROJECT] --export CSV command
    • and some bugs

    and update documents

    PRs

    • remove attributes(conditions and query) and fix bugs by @31159piko-suke in https://github.com/adansons/base/pull/60
    • Feature/#61 by @31159piko-suke in https://github.com/adansons/base/pull/62
    • enabled export csv file by search --export csv command by @31159piko-suke in https://github.com/adansons/base/pull/65
    • Update jupyternotebook :Consistent with README.md by @ynntech in https://github.com/adansons/base/pull/56
    • fixed path specification error with search --export by @31159piko-suke in https://github.com/adansons/base/pull/66
    • Enabled evaluate number as int in query by @31159piko-suke in https://github.com/adansons/base/pull/64
    • add parser.validate_parsing_rule by @ShuntaroSuzuki in https://github.com/adansons/base/pull/70
    • enable specify table joining rule by base import by @31159piko-suke in https://github.com/adansons/base/pull/68
    • solved issue#36 by @31159piko-suke in https://github.com/adansons/base/pull/72
    • v0.1.2 by @kenichihiguchi in https://github.com/adansons/base/pull/73

    New Contributors

    • @ShuntaroSuzuki made their first contribution in https://github.com/adansons/base/pull/70

    Full Changelog: https://github.com/adansons/base/compare/v0.1.1...v0.1.2

    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(May 18, 2022)

    What's Changed

    improve features

    • update the output of base show [PROJECT] command to know what keys in the project easily
    • create a progress bar at datafile import command
    • support + and | operators with base.files.Files() class

    fix bugs

    • crash bug when we import the external files include Japanese
    • one-hot vector mapping doesn't work well on base.dataset.Dataset() class (this feature will be temporary removed)

    and update documents

    PRs

    • update README by @cv-dote in https://github.com/adansons/base/pull/18
    • fixed link for SDK docs by @kenichihiguchi in https://github.com/adansons/base/pull/21
    • add link to medium by @kenichihiguchi in https://github.com/adansons/base/pull/23
    • Feature/#16 by @kuriyan1204 in https://github.com/adansons/base/pull/24
    • Update filename in tutorial notebook by @ynntech in https://github.com/adansons/base/pull/26
    • Support Japanese by @ynntech in https://github.com/adansons/base/pull/30
    • create actions yml file for dev and main branch by @31159piko-suke in https://github.com/adansons/base/pull/40
    • temporarily removed convert dict and onehot vector by @31159piko-suke in https://github.com/adansons/base/pull/37
    • make it possible to check progress in base import by @31159piko-suke in https://github.com/adansons/base/pull/38
    • Supported + and | operators for Files by @YU-SUKETAKAHASHI in https://github.com/adansons/base/pull/41
    • Added .metadata attr to File by @YU-SUKETAKAHASHI in https://github.com/adansons/base/pull/46
    • Fixed error statements when parsing fails. by @YU-SUKETAKAHASHI in https://github.com/adansons/base/pull/47
    • Feature/#32 by @ynntech in https://github.com/adansons/base/pull/43
    • added description for Files and Dataset by @31159piko-suke in https://github.com/adansons/base/pull/49
    • update base show output to know keys on metadata DB easily by @kenichihiguchi in https://github.com/adansons/base/pull/50
    • v0.1.1 by @ynntech in https://github.com/adansons/base/pull/51
    • increment version 0.1.0 -> 0.1.1 by @kenichihiguchi in https://github.com/adansons/base/pull/53
    • v0.1.1 by @kenichihiguchi in https://github.com/adansons/base/pull/54

    New Contributors

    • @kuriyan1204 made their first contribution in https://github.com/adansons/base/pull/24
    • @31159piko-suke made their first contribution in https://github.com/adansons/base/pull/40
    • @YU-SUKETAKAHASHI made their first contribution in https://github.com/adansons/base/pull/41

    Full Changelog: https://github.com/adansons/base/compare/v0.1.0...v0.1.1

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Apr 25, 2022)

Owner
Adansons Inc
東北大学発AIスタートアップ、株式会社Adansonsです。
Adansons Inc
A tool for fixing inconsistent timestamp metadata (atime, ctime, and mtime).

Mtime Fixer Mtime Fixer is a tool for fixing inconsistent timestamp metadata (atime, ctime, and mtime). Sometimes timestamp metadata of folders are in

Halit Şimşek 2 Jan 11, 2022
「📖」Tool created to extract metadata from a domain

Metafind is an OSINT tool created with the aim of automating the search for metadata of a particular domain from the search engine known as Google.

null 9 Dec 28, 2022
A collection of existing KGQA datasets in the form of the huggingface datasets library, aiming to provide an easy-to-use access to them.

KGQA Datasets Brief Introduction This repository is a collection of existing KGQA datasets in the form of the huggingface datasets library, aiming to

Semantic Systems research group 21 Jan 6, 2023
A tool that automatically creates fuzzing harnesses based on a library

AutoHarness is a tool that automatically generates fuzzing harnesses for you. This idea stems from a concurrent problem in fuzzing codebases today: large codebases have thousands of functions and pieces of code that can be embedded fairly deep into the library. It is very hard or sometimes even impossible for smart fuzzers to reach that codepath. Even for large fuzzing projects such as oss-fuzz, there are still parts of the codebase that are not covered in fuzzing. Hence, this program tries to alleviate this problem in some capacity as well as provide a tool that security researchers can use to initially test a code base. This program only supports code bases which are coded in C and C++.

null 261 Jan 4, 2023
A python tool that creates issues in your repos based on TODO comments in your code

Krypto A neat little sidekick python script to create issues on your repo based on comments left in the code on your behalf Convert todo comments in y

Alex Antoniou 4 Oct 26, 2021
Yunqi Chen 7 Oct 30, 2022
A program made in PYTHON🐍 that automatically performs data insertions into a POSTGRES database 🐘 , using as base a .CSV file 📁 , useful in mass data insertions

A program made in PYTHON?? that automatically performs data insertions into a POSTGRES database ?? , using as base a .CSV file ?? , useful in mass data insertions.

Davi Galdino 1 Oct 17, 2022
Glyph Metadata Palette

This plugin for Glyphs3 allows you to associate arbitrary structured metadata to each glyph in your font.

Simon Cozens 4 Jan 26, 2022
GitHub Actions Version Updater Updates All GitHub Action Versions in a Repository and Creates a Pull Request with the Changes.

GitHub Actions Version Updater GitHub Actions Version Updater is GitHub Action that is used to update other GitHub Actions in a Repository and create

Maksudul Haque 42 Dec 22, 2022
creates a batch file that uses adb to auto-install apks into the Windows Subsystem for Android and registers it as the default application to open apks.

wsa-apktool creates a batch file that uses adb to auto-install apks into the Windows Subsystem for Android and registers it as the default application

Aditya Vikram 3 Apr 5, 2022
A simple program which gets a file(CSV/Excel) with tasks and creates different variants

TestMakerProject A simple program which gets a file(CSV/Excel) with tasks and creates different variants The main program is QTengine.py You only have

George 3 Nov 18, 2021
Creates a release pull request updating changelog and tags with standard-version

standard version release branch Github action to open releases following convent

null 8 Sep 13, 2022
A command-line utility that creates projects from cookiecutters (project templates), e.g. Python package projects, VueJS projects.

Cookiecutter A command-line utility that creates projects from cookiecutters (project templates), e.g. creating a Python package project from a Python

null 18.6k Jan 2, 2023
Addon for Blender 2.8+ that automatically creates NLA tracks for all animations. Useful for GLTF export.

PushDownAll An addon for Blender 2.8+ that runs Push Down on all animations, creating NLA tracks for each. This is useful if you have an object with m

Cory Petkovsek 16 Oct 6, 2022
🤖🧭Creates google-like navigation menu using python-telegram-bot wrapper

python telegram bot menu pagination Makes a google style pagination line for a list of items. In other words it builds a menu for navigation if you ha

Sergey Smirnov 9 Nov 27, 2022
The-White-Noise-Project - The project creates noise intentionally

The-White-Noise-Project High quality audio matters everywhere, even in noise. Be

Ali Hakim Taşkıran 1 Jan 2, 2022
Script that creates graphical representations of Julia an Mandelbrot sets.

Julia and Mandelbrot Picture Maker This simple functions create simple plots of the Julia and Mandelbrot sets. The Julia set require the important par

Juan Riera Gomez 1 Jan 10, 2022
Implent of Oracle Base line and Lea-3 Baseline

Oracle-Baseline Implent of Oracle Base line and Lea-3 Baseline Oracle Oracle : This model is used to obtain an oracle with a greedy algorithm similar

Andrew Zeng 2 Nov 12, 2021
Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format.

Showdown-BDSP-Converter Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format. Download the lat

Alden Mo 2 Jan 2, 2022