Faster, modernized fork of the language identification tool langid.py

Overview

py3langid

py3langid is a fork of the standalone language identification tool langid.py by Marco Lui.

Original license: BSD-2-Clause. Fork license: BSD-3-Clause.

Changes in this fork

Execution speed has been improved and the code base has been optimized for Python 3.6+:

  • Loading the module with import is now about 10x faster
  • Language detection with langid.classify is now about 5x faster

For implementation details see this blog post: How to make language detection with langid.py faster.

Usage

Drop-in replacement

  1. Install the package:
    • pip3 install py3langid (or pip where applicable)
  2. Use it:
    • with Python: import py3langid as langid
    • on the command-line: langid

With Python

Basics:

>>> import py3langid as langid

>>> text = 'This text is in English.'
# identified language and probability
>>> langid.classify(text)
('en', -56.77428913116455)
# unpack the result tuple in variables
>>> lang, prob = langid.classify(text)
# all potential languages
>>> langid.rank(text)

More options:

>>> from py3langid.langid import LanguageIdentifier, MODEL_FILE

# subset of target languages
>>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE)
>>> identifier.set_languages(['de', 'en', 'fr'])
# this won't work well...
>>> identifier.classify('这样不好')
('en', -81.83166265487671)

# normalization of probabilities to an interval between 0 and 1
>>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE, norm_probs=True)
>>> identifier.classify('This should be enough text.'))
('en', 1.0)

Note: the Numpy data type for the feature vector has been changed to optimize for speed. If results are inconsistent, try restoring the original setting:

>>> langid.classify(text, datatype='uint32')

On the command-line

# basic usage with probability normalization
$ echo "This should be enough text." | langid -n
('en', 1.0)

# define a subset of target languages
$ echo "This won't be recognized properly." | langid -n -l fr,it,tr
('it', 0.9703832808613264)

Legacy documentation

The docs below are provided for reference, only part of the functions are currently tested and maintained.

Introduction

langid.py is a standalone Language Identification (LangID) tool.

The design principles are as follows:

  1. Fast
  2. Pre-trained over a large number of languages (currently 97)
  3. Not sensitive to domain-specific features (e.g. HTML/XML markup)
  4. Single .py file with minimal dependencies
  5. Deployable as a web service

All that is required to run langid.py is Python >= 3.6 and numpy.

The accompanying training tools are still Python2-only.

langid.py is WSGI-compliant. langid.py will use fapws3 as a web server if available, and default to wsgiref.simple_server otherwise.

langid.py comes pre-trained on 97 languages (ISO 639-1 codes given):

af, am, an, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, dz, el, en, eo, es, et, eu, fa, fi, fo, fr, ga, gl, gu, he, hi, hr, ht, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lb, lo, lt, lv, mg, mk, ml, mn, mr, ms, mt, nb, ne, nl, nn, no, oc, or, pa, pl, ps, pt, qu, ro, ru, rw, se, si, sk, sl, sq, sr, sv, sw, ta, te, th, tl, tr, ug, uk, ur, vi, vo, wa, xh, zh, zu

The training data was drawn from 5 different sources:

  • JRC-Acquis
  • ClueWeb 09
  • Wikipedia
  • Reuters RCV2
  • Debian i18n

Usage

langid [options]
optional arguments:
-h, --help show this help message and exit
-s, --serve launch web service
--host=HOST host/ip to bind to
--port=PORT port to listen on
-v increase verbosity (repeat for greater effect)
-m MODEL load model from file
-l LANGS, --langs=LANGS
  comma-separated set of target ISO639 language codes (e.g en,de)
-r, --remote auto-detect IP address for remote access
-b, --batch specify a list of files on the command line
--demo launch an in-browser demo application
-d, --dist show full distribution over languages
-u URL, --url=URL
  langid of URL
--line process pipes line-by-line rather than as a document
-n, --normalize
  normalize confidence scores to probability values

The simplest way to use langid.py is as a command-line tool, and you can invoke using python langid.py. If you installed langid.py as a Python module (e.g. via pip install langid), you can invoke langid instead of python langid.py -n (the two are equivalent). This will cause a prompt to display. Enter text to identify, and hit enter:

>>> This is a test
('en', -54.41310358047485)
>>> Questa e una prova
('it', -35.41771221160889)

langid.py can also detect when the input is redirected (only tested under Linux), and in this case will process until EOF rather than until newline like in interactive mode:

python langid.py < README.rst
('en', -22552.496054649353)

The value returned is the unnormalized probability estimate for the language. Calculating the exact probability estimate is disabled by default, but can be enabled through a flag:

python langid.py -n < README.rst
('en', 1.0)

More details are provided in this README in the section on Probability Normalization.

You can also use langid.py as a Python library:

# python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("This is a test")
('en', -54.41310358047485)

Finally, langid.py can use Python's built-in wsgiref.simple_server (or fapws3 if available) to provide language identification as a web service. To do this, launch python langid.py -s, and access http://localhost:9008/detect . The web service supports GET, POST and PUT. If GET is performed with no data, a simple HTML forms interface is displayed.

The response is generated in JSON, here is an example:

{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

A utility such as curl can be used to access the web service:

# curl -d "q=This is a test" localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

You can also use HTTP PUT:

# curl -T readme.rst localhost:9008/detect
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                               Dload  Upload   Total   Spent    Left  Speed
100  2871  100   119  100  2752    117   2723  0:00:01  0:00:01 --:--:--  2727
{"responseData": {"confidence": -22552.496054649353, "language": "en"}, "responseDetails": null, "responseStatus": 200}

If no "q=XXX" key-value pair is present in the HTTP POST payload, langid.py will interpret the entire file as a single query. This allows for redirection via curl:

# echo "This is a test" | curl -d @- localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

langid.py will attempt to discover the host IP address automatically. Often, this is set to localhost(127.0.1.1), even though the machine has a different external IP address. langid.py can attempt to automatically discover the external IP address. To enable this functionality, start langid.py with the -r flag.

langid.py supports constraining of the output language set using the -l flag and a comma-separated list of ISO639-1 language codes (the -n flag enables probability normalization):

# python langid.py -n -l it,fr
>>> Io non parlo italiano
('it', 0.99999999988965627)
>>> Je ne parle pas français
('fr', 1.0)
>>> I don't speak english
('it', 0.92210605672341062)

When using langid.py as a library, the set_languages method can be used to constrain the language set:

python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("I do not speak english")
('en', 0.57133487679900674)
>>> langid.set_languages(['de','fr','it'])
>>> langid.classify("I do not speak english")
('it', 0.99999835791478453)
>>> langid.set_languages(['en','it'])
>>> langid.classify("I do not speak english")
('en', 0.99176190378750373)

Batch Mode

langid.py supports batch mode processing, which can be invoked with the -b flag. In this mode, langid.py reads a list of paths to files to classify as arguments. If no arguments are supplied, langid.py reads the list of paths from stdin, this is useful for using langid.py with UNIX utilities such as find.

In batch mode, langid.py uses multiprocessing to invoke multiple instances of the classifier, utilizing all available CPUs to classify documents in parallel.

Probability Normalization

The probabilistic model implemented by langid.py involves the multiplication of a large number of probabilities. For computational reasons, the actual calculations are implemented in the log-probability space (a common numerical technique for dealing with vanishingly small probabilities). One side-effect of this is that it is not necessary to compute a full probability in order to determine the most probable language in a set of candidate languages. However, users sometimes find it helpful to have a "confidence" score for the probability prediction. Thus, langid.py implements a re-normalization that produces an output in the 0-1 range.

langid.py disables probability normalization by default. For command-line usages of langid.py, it can be enabled by passing the -n flag. For probability normalization in library use, the user must instantiate their own LanguageIdentifier. An example of such usage is as follows:

>> from py3langid.langid import LanguageIdentifier, MODEL_FILE
>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE, norm_probs=True)
>> identifier.classify("This is a test")
('en', 0.9999999909903544)

Training a model

So far Python 2.7 only, see the original instructions.

Read more

langid.py is based on published research. [1] describes the LD feature selection technique in detail, and [2] provides more detail about the module langid.py itself.

[1] Lui, Marco and Timothy Baldwin (2011) Cross-domain Feature Selection for Language Identification, In Proceedings of the Fifth International Joint Conference on Natural Language Processing (IJCNLP 2011), Chiang Mai, Thailand, pp. 553—561. Available from http://www.aclweb.org/anthology/I11-1062

[2] Lui, Marco and Timothy Baldwin (2012) langid.py: An Off-the-shelf Language Identification Tool, In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012), Demo Session, Jeju, Republic of Korea. Available from www.aclweb.org/anthology/P12-3005

Comments
  • Normalized probabilities: only 1.0 in output values

    Normalized probabilities: only 1.0 in output values

    Hi Adrien,

    I am currently testing py3langid and I noticed something strange: the normalized probability values in the output are systematically 1.0. I tested texts of different lengths (1 word to several paragraphs) in different languages. I'm using it with Python. Is this something you noticed before?

    Thanks, Aleksandra

    bug 
    opened by aleksandra-miletic 2
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Python3 branch (Sourcery refactored)

    Python3 branch (Sourcery refactored)

    Pull Request #2 refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    NOTE: As code is pushed to the original Pull Request, Sourcery will re-run and update (force-push) this Pull Request with new refactorings as necessary. If Sourcery finds no refactorings at any point, this Pull Request will be closed automatically.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the python3 branch, then run:

    git fetch origin sourcery/python3
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 0
Releases(v0.2.2)
  • v0.2.2(Jun 14, 2022)

    • Fixed bug in probability normalization (#6)
    • Fully implemented data type argument in classify()
    • Adapted training scripts to Python3 (untested)

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.2.1...v0.2.2

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Mar 29, 2022)

  • v0.2.0(Nov 29, 2021)

    • Change Numpy data type for features (uint32uint16)
    • Code cleaning

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.1.2...v0.2.0

    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Nov 24, 2021)

    • Include data in non-wheel package versions
    • Faster module loading
    • Extended tests and readme

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.1.0...v0.1.2

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Nov 23, 2021)

Owner
Adrien Barbaresi
Research scientist – natural language processing, web scraping and text analytics. Mostly with Python.
Adrien Barbaresi
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

null 1.7k Feb 7, 2021
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

null 1.7k Feb 17, 2021
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation ?? For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 1, 2023
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 89 Dec 18, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

null 2 Jan 17, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computation, and hence adding custom metric is easy as adopting datasets.Metric.

Open Business Software Solutions 129 Jan 6, 2023
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 5, 2023
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 8, 2022