Effective Use of Transformer Networks for Entity Tracking

Overview

Effective Use of Transformer Networks for Entity Tracking (EMNLP19)

This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-trained transformer architectures in capturing complex entity interaction in procedural texts.

Dependencies

The code was developed by extending Hugging Face's implementations of OpenAI's GPT and BERT.

Dataset and code

The dataset for two tasks: (i) Recipes, and (ii) ProPara can be found here in the appropriate directories.

The codebase consists of two main sub-directories:

gpt-entity-tracking

This consist of the codebase for the main ET-GPT model along with the variants, related experimentation, and gradient analysis for the Recipes and ProPara dataset:

  • train_transformer_recipe_lm.py is the main training code for the Recipes task and following is the example usage:
python3 train_transformer_recipe_lm.py --n_iter_lm 5 --n_iter 20 --n_layer 12 --n_head 12 --n_embd 768 --lmval 2000 --lmtotal 50000
  • dataset/ folder consists of the complete train/val/test data for the two tasks.
  • save/ folder consists of the saved model params for the best model which can used to reproduce results.
  • log/ folder consists of the training logs after each iteration.
  • run_transformer_recipe_lm.py load a saved model to perform inference on the test set.
  • train_transformer_recipes_lm5_12_12_768_50000.npy consists of the probabilities for the test file in dataset folder test_recipes_task.json.
  • ingredient_type_annotations_dev_test.json is the annotated json file containing ground truth whether the ingredient was in a combined or uncombined state in a recipe in a particular time-step. This was file used for calculating Combined Recall and Uncombined Recall.

bert-entity-tracking

This consists of codebase for the ET-BERT experiments, primarily focused on the ProPara experiments:

  • bert_propara_context_ing/ and bert_propara_ing_context/ folders consists of the reproduced results for ProPara experiments. The code for this would be in bert_propara.py.
  • propara_sent_test_bert_et.tsv consists of the results on the sentence level task and using this script
  • propara_sent_val_bert_et.tsv consists of the results on validation set of sentence level task.
  • para_id.val.txt and gold_labels_valid.tsv are the helper files for val set of ProPara's sentence level task.

Citation

 @inproceedings{gupta-durrett-2019-entity-tracking,
    title = "Effective Use of Transformer Networks for Entity Tracking",
    author = "Gupta, Aditya  and Durrett, Greg",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
}
You might also like...
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

Multiple-Object Tracking with Transformer
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

Learning Spatio-Temporal Transformer for Visual Tracking
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

TrTr: Visual Tracking with Transformer
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

Comments
  • Detail of ProPara Dataset

    Detail of ProPara Dataset

    https://github.com/aditya2211/transformer-entity-tracking/blob/d83e6e606141e69baa669fd30fbd688424d96bad/gpt-entity-tracking/get_propara_data_gpt.py#L5

    Hi, where can we get the train/dev/test set of ProPara?

    opened by XingLuxi 1
  • Experiment setting of ET BERT

    Experiment setting of ET BERT

    Since BERT is bidirectional, simply reconstructing the input cannot explicitly inform the model to be entity-centric. How do you apply the entity conditioned framework to BERT?

    opened by JizeCao 5
Owner
null
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

null 24 May 30, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 5, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022