Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Overview

Pseudo-random numbers with pseudoscience

Build and deploy Python app to Azure Web App - andrew-rng

rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng be based on the position of the sun, and the zodiac signs? Well lucky you, you're on the right repo!

This is the code to churn through some astrology, and make an app you can deploy to Azure. You can access the API here: http://andrew-rng.azurewebsites.net/

The code

Whatever, I dont know. We are finding random numbers using the position of the sun? Does it matter? who cares.

Well, anyway, we follow a few quick steps:

  • find the Zodiac sign the sun/ moon are in, and their position. This will only update daily - so you only get one random number a day! make the most of it! (interstingly, the moon goes through the zodiac houses super fast, over and over again in the year)
  • Man, turns out starsigns are complicated. This is all based on a real astronomy python library, and therefore acknowledge the existence of ophiuchus, which astrologers dont accept. If the sun or moon are in ophiuchus, we are gonna just swap it with Scorpio
  • For the constellation, pick out the brightest star (found in the json)
  • calculate the distance, in radians, between this star and the sun or moon
  • then we do something to merge all these numbers together? thats it.

this will give you a randomish number. Heres a plot that starts to describe all this data:

plot

(please dont use this to actually do rng. but you also should cause it would be very funny. pls cite me.)

You might also like...
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository provides the official PyTorch implementation

Owner
Andrew Blance
Recent PhD grad, working as a data scientist at Waterstons
Andrew Blance
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web browsers, and performing many other daily tasks like playing music with the help of a single voice command.

Harsh Gupta 1 Nov 9, 2021
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 9, 2022
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Nafis Ahmed 1 Dec 28, 2021
Nicholas Lee 3 Jan 9, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 8, 2023