STEM: An approach to Multi-source Domain Adaptation with Guarantees

Overview

STEM: An approach to Multi-source Domain Adaptation with Guarantees

Introduction

This is the official implementation of ``STEM: An approach to Multi-source Domain Adaptation with Guarantees''

Prerequisites

System Requirement:

  • Anaconda3
  • Cuda toolkit 10.0

Install other environment requirement by Anaconda3 following:

conda env create -f env.yml

Note: the environment requires tensorbayes libs, however, available tensorbayes using Python 2.7. To fix the problem, please download tensorbayes, untar it and override to the env (stem) folder:

tar -xvf tensorbayes.tar
cp -rf ./tensorbayes/* /opt/conda/envs/stem/lib/python3.6/site-packages/tensorbayes/

Dataset Preparation

Please download and unzip the dataset and save all *.mat file under ../datasets. To save time computing, we extracted ResNet101 feature for Office-Caltech10 and provided as following:

Training

The config parameter to train model in config folder, please check it before run. To train the model, simply run:

python run_stem_ht_mimic_hs.py --config 
   
    .yaml --trg_name 
    

    
   

For example:

Train Digit-five with target domain is Synthetic Digits:

python run_stem_ht_mimic_hs.py --config DigitFive.yaml --trg_name syn

Train Office-Caltech10 with target domain is Amazon:

python run_stem_ht_mimic_hs.py --config OfficeCaltech10.yaml --trg_name amazon

Cite

Please cite the paper whenever our STEM is used to produce published results or incorporated into other software:

@InProceedings{Nguyen_2021_ICCV,
author    = {Nguyen, Van-Anh and Nguyen, Tuan and Le, Trung and Tran, Quan Hung and Phung, Dinh},
title     = {STEM: An Approach to Multi-Source Domain Adaptation With Guarantees},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month     = {October},
year      = {2021},
pages     = {9352-9363}

}

You might also like...
PyTorch code for the paper
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Progressive Domain Adaptation for Object Detection
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

Owner
I am just a newbie in Deep learning and want to learn many things :D
null
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 5, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

null 238 Dec 22, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 2, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

null 16 Nov 28, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

null 119 Dec 28, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022