pgvector-python
pgvector support for Python
Great for online recommendations
Supports Django, SQLAlchemy, Psycopg 2, Psycopg 3, and asyncpg
Installation
Run:
pip install pgvector
And follow the instructions for your database library:
- Django
- SQLAlchemy
- Psycopg 2
- Psycopg 3 [experimental]
- asyncpg
Or check out some examples:
- Implicit feedback recommendations with Implicit
- Explicit feedback recommendations with Surprise
- Recommendations with LightFM
Django
Create the extension
from pgvector.django import VectorExtension
class Migration(migrations.Migration):
operations = [
VectorExtension()
]
Add a vector field
from pgvector.django import VectorField
class Item(models.Model):
factors = VectorField(dimensions=3)
Insert a vector
item = Item(factors=[1, 2, 3])
item.save()
Get the nearest neighbors to a vector
from pgvector.django import L2Distance
Item.objects.order_by(L2Distance('factors', [3, 1, 2]))[:5]
Also supports MaxInnerProduct
and CosineDistance
Add an approximate index
from pgvector.django import IvfflatIndex
class Item(models.Model):
class Meta:
indexes = [
IvfflatIndex(
name='my_index',
fields=['factors'],
lists=100,
opclasses=['vector_l2_ops']
)
]
Use vector_ip_ops
for inner product and vector_cosine_ops
for cosine distance
SQLAlchemy
Add a vector column
from pgvector.sqlalchemy import Vector
class Item(Base):
factors = Column(Vector(3))
Insert a vector
item = Item(factors=[1, 2, 3])
session.add(item)
session.commit()
Get the nearest neighbors to a vector
session.query(Item).order_by(Item.factors.l2_distance([3, 1, 2])).limit(5).all()
Also supports max_inner_product
and cosine_distance
Add an approximate index
index = Index('my_index', Item.factors,
postgresql_using='ivfflat',
postgresql_with={'lists': 100},
postgresql_ops={'factors': 'vector_l2_ops'}
)
index.create(engine)
Use vector_ip_ops
for inner product and vector_cosine_ops
for cosine distance
Psycopg 2
Register the vector type with your connection or cursor
from pgvector.psycopg2 import register_vector
register_vector(conn)
Insert a vector
factors = np.array([1, 2, 3])
cur.execute('INSERT INTO item (factors) VALUES (%s)', (factors,))
Get the nearest neighbors to a vector
cur.execute('SELECT * FROM item ORDER BY factors <-> %s LIMIT 5', (factors,))
cur.fetchall()
Psycopg 3
Register the vector type with your connection or cursor
from pgvector.psycopg3 import register_vector
register_vector(conn)
Insert a vector
factors = np.array([1, 2, 3])
cur.execute('INSERT INTO item (factors) VALUES (%s)', (factors,))
Get the nearest neighbors to a vector
cur.execute('SELECT * FROM item ORDER BY factors <-> %s LIMIT 5', (factors,)).fetchall()
asyncpg
Register the vector type with your connection
from pgvector.asyncpg import register_vector
await register_vector(conn)
Insert a vector
factors = np.array([1, 2, 3])
await conn.execute('INSERT INTO item (factors) VALUES ($1)', factors)
Get the nearest neighbors to a vector
await conn.fetch('SELECT * FROM item ORDER BY factors <-> $1 LIMIT 5', factors)
History
View the changelog
Contributing
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
git clone https://github.com/ankane/pgvector-python.git
cd pgvector-python
pip install -r requirements.txt
pytest