Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

Overview

BLEU Score

Implementation for paper:

BLEU: a Method for Automatic Evaluation of Machine Translation

Author: Ba Ngoc from ProtonX

BLEU score is a popular metric to evaluate machine translation. Check out the recent Transformer project we published.

I. Usage

from bleu_score import cal_corpus_bleu_score

candidates = ['eating chicken chicken is a eating a eating chicken',
              'eating chicken chicken is not good']
references_list = [['a chicken is eating chicken', 'there is a chicken eating chicken'], [
    'a chicken is eating chicken', 'there is a chicken eating chicken']]

bleu_score = cal_corpus_bleu_score(candidates, references_list,
                      weights=(0.25, 0.25, 0.25, 0.25), N=4)

print('Bleu Score: {}'.format(bleu_score))

II. BLEU Score Formula

1. Precision

We count specific n-grams in the candidates and the number of those grams in the references. Then we calculate the proportion of two countings and get the precision.

Important to note: Count clip means that the number of typical n-grams can not exceed the maximum number of that n-grams in any single reference.

For example: if ('a', 'a') gram exists 3 times in a candidate. However, the maximum number of this gram in any single reference is 2. So we will use value 2 for calculation.

If you never heard about grams? It means that we count the number of continuous substrings with a pre-set length in a string.

Candidate 1: 'eating chicken chicken is a eating a eating chicken'

-------Unigram------

eating 3
chicken 3
is 1
a 2

-------bigrams------

eating chicken 2
chicken chicken 1
chicken is 1
is a 1
a eating 2
eating a 1

We can do the same thing with trigrams and 4-grams

2. Sentence brevity penalty

We prefer the reference with a length that is closest to the candidate's.

Checkout function get_eff_ref_length in utils.py.

c: the total lengths of all candidates

r: the total lengths of all effective reference lengths

3. BLEU Formula

N: the number of grams

w: list of pre-set weight for each gram

You might also like...
Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet

Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Phrase-Based & Neural Unsupervised Machine Translation
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

Owner
Ngoc Nguyen Ba
ProtonX Founder, VietAI Hanoi Founder.
Ngoc Nguyen Ba
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machin

Qian Wang 21 Dec 17, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 6, 2021
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 6, 2023