โœ… How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

Overview

How Robust are Fact Checking Systems
on Colloquial Claims?

figure

Official PyTorch implementation of our NAACL paper:
Byeongchang Kim*, Hyunwoo Kim*, Seokhee Hong, and Gunhee Kim. How Robust are Fact Checking Systems on Colloquial Claims? NAACL-HLT, 2021 [Paper] (* equal contribution)

If you use the materials in this repository as part of any published research, we ask you to cite the following paper:

@inproceedings{Kim:2021:colloquial,
  title={How Robust are Fact Checking Systems on Colloquial Claims?},
  author={Kim, Byeongchang and Kim, Hyunwoo and Hong, Seokhee and Kim, Gunhee},
  booktitle={NAACL-HLT},
  year={2021}
}

Colloquial Claims dataset

You can download the paper version of our Colloquial Claims dataset via following urls:
[train] [valid] [test]

You can read and explore the dataset as follows:

import json

turns = []
with open('colloquial_claims_train.jsonl', 'r') as fp:
    for line in fp:
        turns.append(json.loads(line))

print(turns[0].keys())
# dict_keys(['colloquial_claims', 'fever_claim', 'fever_label', 'evidences', 'gold_evidence_set', 'fever_id'])

Running style transfer pipeline

In progress

You might also like...
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis ๐Ÿ™ˆ A more detailed re

Paddle implementation for "Cross-Lingual Word Embedding Refinement by โ„“1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by โ„“1 Norm Optimisation" (NAACL 2021) ๐Ÿ™ˆ A more detailed readme is co

Source code for NAACL 2021 paper
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

Open-Ended Commonsense Reasoning (NAACL 2021)
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

Comments
  • pipeline ๊ด€๋ จ ๋ฌธ์˜๋“œ๋ฆฝ๋‹ˆ๋‹ค.

    pipeline ๊ด€๋ จ ๋ฌธ์˜๋“œ๋ฆฝ๋‹ˆ๋‹ค.

    ์•ˆ๋…•ํ•˜์„ธ์š”. ๋จผ์ € ๋ฐœํ‘œํ•˜์‹  ๋…ผ๋ฌธ์—์„œ์˜ ๊ฒฐ๊ณผ๋ฅผ ํฅ๋ฏธ๋กญ๊ฒŒ ๋ดค์Šต๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ FEVER์— ์‚ฌ์šฉํ•˜์‹  ํŒŒ์ดํ”„๋ผ์ธ์„ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ์…‹์—๋„ ํ•œ๋ฒˆ ์ ์šฉํ•ด์„œ ์‹คํ—˜์„ ํ•ด๋ณด๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

    Readme์— style-transfer ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ณต๊ฐœ ์˜ˆ์ •์ด๋ผ๊ณ  ๋ผ์žˆ๋Š”๋ฐ, ํ˜น์‹œ ์–ธ์ œ์ฏค ์˜ˆ์ •์ด์‹ ์ง€ ๊ถ๊ธˆํ•ด์„œ ๋ฌธ์˜๋“œ๋ฆฝ๋‹ˆ๋‹ค.

    ํ˜น์‹œ issue๊ฐ€ ๋ถˆํŽธํ•˜์‹œ๋ฉด, [email protected]์œผ๋กœ ์•Œ๋ ค์ฃผ์‹œ๋ฉด ๊ฐ์‚ฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค

    opened by teddy309 0
Owner
Byeongchang Kim
Ph.D student in CSE
Byeongchang Kim
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 1, 2023
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

null 47 Dec 19, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 1, 2023
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 7, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022