HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

Related tags

Deep Learning HNECV
Overview

HNECV

This repository provides a reference implementation of HNECV as described in the paper:

HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference.
Ming Yuan, LiuQun, Guoyin Wang, Yike Guo.
CAAI International Conference on Artificial Intelligence. 2021.

The paper has been accepted by CICAI, available at here.

Dataset

The processed data used in the paper are available at:

You need to perform the following steps for the downloaded file:

  • Move SingleDBLP.mat to the HNECV/dataset/DBLP/
  • Move SingleAminer.mat to the HNECV/dataset/AMiner/
  • Move SingleYelp.mat to the HNECV/dataset/Yelp/

Basic Usage

If you only want to train the model, you need to specify a certain data set, such as dblp, aminer, yelp

python pytorch_HNECV.py --dataset dblp

If you want to understand all the processes of the model, you can execute the following command

python pipline.py --dataset dblp

noted: You can adjust the hyperparameters in pytorch_HNECV.py or pipeline.py according to your needs

Requirements

  • Python ≥ 3.6
  • PyTorch ≥ 1.7.1
  • scipy ≥ 1.5.2
  • scikit-learn ≥ 0.21.3
  • tqdm ≥ 4.31.1
  • numpy
  • pandas
  • matplotlib

How to use your own data set

Your input file must be a adjacency matrix, which can be a mat file or other compressed format

If you only have the edgelist file, you need to follow the preprocessing method in pipline.py, and rewrite the corresponding semantic random walk code.

noted: If you run pytorch_HNECV.py directly, You need at least the label file of the node, like the initial file in the dataset/DBLP/reindex_dblp/ folder

Citing

If HNECV is useful for your research, please cite the following paper:

@inproceedings{yuan2021hnecv,
  title={HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference},
  author={Ming Yuan, Qun Liu, Guoyin Wang, Yike Guo},
  booktitle={CAAI International Conference on Artificial Intelligence},
  year={2021},
  address={Hangzhou}
}
You might also like...
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

Implementation of Heterogeneous Graph Attention Network
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

The source code of the paper
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Code for KDD'20
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Data-depth-inference - Data depth inference with python
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Owner
null
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

null 52 Dec 30, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Intel Labs 210 Jan 4, 2023
LBK 20 Dec 2, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

null 82 Nov 29, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

null 342 Dec 2, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 2, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 8, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022