CoSENT
比Sentence-BERT更有效的句向量方案
介绍
效果
train训练、test测试:
ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | |
---|---|---|---|---|---|---|
BERT+CoSENT | 49.74 | 72.38 | 78.69 | 60.00 | 80.14 | 68.19 |
Sentence-BERT | 46.36 | 70.36 | 78.72 | 46.86 | 66.41 | 61.74 |
RoBERTa+CoSENT | 50.81 | 71.45 | 79.31 | 61.56 | 81.13 | 68.85 |
Sentence-RoBERTa | 48.29 | 69.99 | 79.22 | 44.10 | 72.42 | 62.80 |
NLI训练、test测试:
ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | |
---|---|---|---|---|---|---|
BERT+CoSENT | 28.93 | 41.84 | 66.07 | 20.49 | 73.91 | 46.25 |
Sentence-BERT | 28.19 | 42.73 | 64.98 | 15.38 | **74.88 | 45.23 |
RoBERTa+CoSENT | 31.84 | 46.65 | 68.43 | 20.89 | 74.37 | 48.43 |
Sentence-RoBERTa | 31.87 | 45.60 | 67.89 | 15.64 | 73.93 | 46.99 |
环境
需要bert4keras >= 0.10.8
。个人实验环境是tensorflow 1.15 + keras 2.3.1 + bert4keras 0.10.8。
交流
QQ交流群:808623966,微信群请加机器人微信号spaces_ac_cn