An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

Overview

알고리즘 스터디 🔥

부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다.

개인적인 사정 등으로 S034, S055만 참가하였습니다.

스터디 목적

  • 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클
  • 기완: 꾸준하게 자리에 앉아 공부하기 + 코드 설명 연습

  • 2문제부터 시작해서 코딩테스트에 많이 사용되는 3문제 2시간을 flow에 넣도록 실력을 키우기

스터디 기간

  • 21.12.13 ~ 누군가 합격할 때 까지
  • 합격 후 면접스터디로 전환(떨어진사람은 혼자코테준비하기)

스터디 방법

  • 월~금 매일 오전 10시 ~ 12시까지 3문제씩 풀기 + 5시 ~ 6시 리뷰하기

난이도 조절

  • 객관적인 실력 평가를 위해 일주일 동안 같은 문제 수, 시간을 가지고 공부 후 일주일 마다 난이도 조정
  • 21.12.13 ~ 21.12.20 1시간 40분 / 2문제
  1. 스터디 목적(개인포함) 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 + 코드 설명 연습
  2. 스터디 기간은? 월-금(1주일 테스트), 누군가 합격할 때 까지 - 합격하면 면접스터디로 전환(떨어진사람은 혼자코테준비하기)

문제 목록

날짜 출제 기관 문제
2021.12.13 2021 KAKAO BLIND RECRUITMENT 메뉴 리뉴얼
2021.12.13 2021 KAKAO BLIND RECRUITMENT 순위 검색
2021.12.14 2021 KAKAO 채용연계형 인턴십 표 편집
2021.12.14 2021 KAKAO 채용연계형 인턴십 거리두기 확인하기

스프린트 캘린더

wiki 참조

You might also like...
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

 Open-Set Recognition: A Good Closed-Set Classifier is All You Need
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

Script that receives an Image (original) and a set of images to be used as
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

RL algorithm  PPO and IRL algorithm AIRL written with Tensorflow.
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Comments
  • 220103 & 220104 문제 풀이

    220103 & 220104 문제 풀이

    1,2는 리뷰가 필요없을 정도로 간단한 문제였습니다. 3번 문제는 비트마스크를 이용한 완전 탐색 문제였습니다. -> 난이도 극상 / 대신 개념자체는 모든 조합을 뽑아서 그 조합의 인덱스를 비트 연산을 이용해서 인덱스가 겹치는 것이 없다는 것을 활용해 마찬가지로 비트연산으로 인덱스의 위치를 세기만 하면 되는 문제였습니다.

    opened by alibreo3754 1
  • 2022.01.11 문제

    2022.01.11 문제

    opened by jogiking 0
  • 211228 문제 풀이

    211228 문제 풀이

    close #23 2016 - O(n2) 가능한 경우의 수를 탐색하면서 계산하기 2017(discussion) - O(n) prefix를 2path 다 계산 해두면 되는 문제, bfs로 계산햇다가 n2이라 실패함, 1path라서 생각을안함 2018(discussion) - O(mn) bfs가능할거라 생각했는데, 도저히 못풀 것 같아서 참고를 하니 스트링을 합쳐서 계산하는 문제여서 차근차근 풀었음 2019(시간초과) - 주말에 풀고 반영

    opened by alibreo3754 0
Owner
null
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

null 6 Jun 27, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 8, 2023
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

null 4 Aug 2, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

null 567 Dec 26, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 9, 2023
Pose estimation for iOS and android using TensorFlow 2.0

?? Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022