Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

Related tags

Deep Learning LANKA
Overview

LANKA

This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper)

Reference

If this repository helps you, please kindly cite the following bibtext:

@inproceedings{cao-etal-2021-knowledgeable,
    title = "Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases",
    author = "Cao, Boxi  and
      Lin, Hongyu  and
      Han, Xianpei  and
      Sun, Le  and
      Yan, Lingyong  and
      Liao, Meng  and
      Xue, Tong  and
      Xu, Jin",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.146",
    pages = "1860--1874",

Usage

To reproduce our results:

1. Create conda environment and install requirements

git clone https://github.com/c-box/LANKA.git
cd LANKA
conda create --name lanka python=3.7
conda activate lanka
pip install -r requirements.txt

2. Download the data

3. Run the experiments

If your GPU is smaller than 24G, please adjust batch size using "--batch-size" parameter.

3.1 Prompt-based Retrieval

  • Evaluate the precision on LAMA and WIKI-UNI using different prompts:

    • Manually prompts created by Petroni et al. (2019)

      python -m scripts.run_prompt_based --relation-type lama_original --model-name bert-large-cased --method evaluation --cuda-device [device] --batch-size [batch_size]
    • Mining-based prompts by Jiang et al. (2020b)

      python -m scripts.run_prompt_based --relation-type lama_mine --model-name bert-large-cased --method evaluation --cuda-device [device]
    • Automatically searched prompts from Shin et al. (2020)

      python -m scripts.run_prompt_based --relation-type lama_auto --model-name bert-large-cased --method evaluation --cuda-device [device]
  • Store various distributions needed for subsequent experiments:

    python -m scripts.run_prompt_based --model-name bert-large-cased --method store_all_distribution --cuda-device [device]
  • Calculate the average percentage of instances being covered by top-k answers or predictions (Table 1):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method topk_cover --cuda-device [device]
  • Calculate the Pearson correlations of the prediction distributions on LAMA and WIKI-UNI (Figure 3, the figures will be stored in the 'pics' folder):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method prediction_corr --cuda-device [device]
  • Calculate the Pearson correlations between the prompt-only distribution and prediction distribution on WIKI-UNI (Figure 4):

    python -m scripts.run_prompt_based --model-name bert-large-cased --method prompt_only_corr --cuda-device [device]
  • Calculate the KL divergence between the prompt-only distribution and golden answer distribution of LAMA (Table 2):

    python -m scripts.run_prompt_based --relation-type [relation_type] --model-name bert-large-cased --method cal_prompt_only_div --cuda-device [device]

3.2 Case-based Analogy

  • Evaluate case-based paradigm:

    python -m scripts.run_case_based --model-name bert-large-cased --task evaluate_analogy_reasoning --cuda-device [device]
  • Detailed comparison for prompt-based and case-based paradigms (precision, type precision, type change, etc.) (Table 4):

    python -m scripts.run_case_based --model-name bert-large-cased --task type_precision --cuda-device [device]
  • Calculate the in-type rank change (Figure 6):

    python -m scripts.run_case_based --model-name bert-large-cased --task type_rank_change --cuda-device [device]

3.3 Context-based Inference

  • For explicit answer leakage (Table 5 and 6):

    python -m scripts.run_context_based --model-name bert-large-cased --method explicit_leak --cuda-device [device]
  • For implicit answer leakage (Table 7):

    python -m scripts.run_context_based --model-name bert-large-cased --method implicit_leak --cuda-device [device]
You might also like...
Source code for paper: Knowledge Inheritance for Pre-trained Language Models
Source code for paper: Knowledge Inheritance for Pre-trained Language Models

Knowledge-Inheritance Source code paper: Knowledge Inheritance for Pre-trained Language Models (preprint). The trained model parameters (in Fairseq fo

Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

A Multi-modal Model Chinese Spell Checker Released on ACL2021.
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

 Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

 Twins: Revisiting the Design of Spatial Attention in Vision Transformers
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

Comments
  • Some problems about how to acquire the objects type by

    Some problems about how to acquire the objects type by " Entity Set Type Induction"

    Hi,thank you for your open sourse of the thesis,and your method to investigate the MLM behaviour is quite exhaustive. i'm very interested in your excited work,however ,i encounted some confusion about the " Entity Set Type Induction" module. ①To acquire my objects type ,Which files do I need to execute sequentially? ②What's means about the "wikidata_tuples_p31" and "wikidata_tuples_p279", in order to figure this out, what information I need to refer to. ③Do you have any suggestions (or method guidance) for object type recognition for my own task needs? Thank you very much!

    opened by CreaterLL 3
Owner
Boxi Cao
NLP
Boxi Cao
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 1, 2023
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 5, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 7, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

null 274 Dec 6, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 9, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

null 108 Dec 23, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 7, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 7, 2021
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 4, 2023