This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

Overview

AB-TRAP: building invisibility shields to protect network devices

The AB-TRAP framework is applicable to the development of Network Intrusion Detection Systems (NIDS), it enables the use of updated network traffic and considers operational concerns to enable the complete deployment of the solution. It is a five-step framework consisting of (i) the generation of the attack dataset, (ii) the bonafide dataset, (iii) training of machine learning models, (iv) realization of the models, and (v) the performance evaluation of the realized model after deployment.

This repositories contains the examples for both Local Area Network (LAN), and the Internet environment taking advantage of virtualization (virtual machines and containers) to support the dataset generation.

This repository contains all the necessary files to rebuilt this project.

Content of this repository

  • /1_Attack dataset: contains the instructions and the required code to generate the attack dataset considering both LAN and Internet environment;
  • /2_Bonafide dataset: contains the instructions and the required code to generate the bonafide dataset based on the MAWILab dataset;
  • /3_Training models: contains the Jupyter Notebooks to pre-process the data, and generate the ML models (LAN and Internet cases);
  • /4_RealizAtion: contains the source code to obtain the machine learning models to be embedded on the target devices, both in the kernel-space using LKM (LAN case), and user-space with Python language (Internet case);
  • /5_Performance Evaluation: contains the instructions to evaluate the Performance of machine learning models in the target device;

Pre-requisites

For the host computer, it is required Python language with the dependencies listed in requirements.txt.

You can setup the environment with Python packet manager (pip):

$ pip install -r requirements.txt

The target computer used on this work is the Raspberry Pi 4.

Contribute to the framework

To contribute with the framework, you can use the Issues and Pull Requests from Github platform.

How to cite

@ARTICLE{9501960,  
  author={De Carvalho Bertoli, Gustavo and Pereira Júnior, Lourenço Alves and Saotome, Osamu and Dos Santos, Aldri L. 
        and Verri, Filipe Alves Neto and Marcondes, Cesar Augusto Cavalheiro and Barbieri, Sidnei and Rodrigues, Moises S. 
        and Parente De Oliveira, José M.},  
  journal={IEEE Access},   
  title={An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System},   
  year={2021},  
  volume={9},  
  number={},  
  pages={106790-106805},  
  doi={10.1109/ACCESS.2021.3101188}
}
You might also like...
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

An efficient PyTorch implementation of the evaluation metrics in recommender systems.
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Comments
  • Simple ROC Analysis.

    Simple ROC Analysis.

    I performed a simple ROC analysis in the chosen model.

    One still needs to choose the appropriate thresholds/goals and generate the plots for the paper.

    opened by verri 0
Releases(v0.1.0)
Owner
Lab-C2DC - Laboratory of Command and Control and Cyber-security
Lab-C2DC - Laboratory of Command and Control and Cyber-security
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 1, 2023
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 1, 2023
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 1, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 8, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 3, 2023