Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Overview

Diverse Object-Scene Compositions For Zero-Shot Action Recognition

This repository contains the source code for the use of object-scene compositions for zero-shot action recognition.

Overview figure

This repository includes:

  • object and scene predictions for UCF-101, UCF-Sports, J-HMDB
  • script to retrieve object and scene predictions for Kinetics
  • scripts to obtain word and sentence embeddings for all datasets used and for object-scene compositions
  • script to obtain action predictions from any given action dataset, given the object and scene predictions and the respective action labels

Software used

  • python 3.8.8
  • pytorch 1.7.1
  • numpy 1.19.2
  • fasttext 0.9.2
  • sentence-transformers 1.2.0
  • scikit-learn 0.24.1

Downloading the object and scene predictions for Kinetics

While the action labels and video annotations for Kinetics are already present in the repo, the object and scene predictions need to be retrieved using:

bash kineticsdownload.sh

Obtaining word and sentence embeddings for all datasets

To compute the word and sentence embeddings for all the video and image datasets run:

python getfasttextembs.py; python getbertembs.py

This will additionally compute the embeddings for all object-scene compositions and the similarities between all action labels and objects-scene compositions.

Using the main script

The main script can be run using the default arguments as follows: To compute the word and sentence embeddings for all the video and image datasets run:

python zero-shot-actions.py

There are several flags that can be used. Descriptions for these can be shown by running:

python zero-shot-actions.py --help

Lastly, a helper function to compute results for different datasets and for different flag values is available:

python make_results.py
You might also like...
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Codes for ACL-IJCNLP 2021 Paper
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

 Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

PyTorch implementation of 1712.06087
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Comments
  • Reproducing Results : kineticsdownload.sh Taking too much time to download

    Reproducing Results : kineticsdownload.sh Taking too much time to download

    Hi, Thank you very much for excellent work and sharing this work. I was trying to reproduce the results so in a process i reach to the command "bash kineticsdownload.sh" but its almost 12 hours that it is being trying to download an giving me the following output as below:


    **2022-08-31 23:07:44 (117 MB/s) - ‘data/kinetics/objectscores/breading_or_breadcrumbing/IinlGViTixI_000120_000130/index.html.tmp’ saved [451]

    Removing data/kinetics/objectscores/breading_or_breadcrumbing/IinlGViTixI_000120_000130/index.html.tmp since it should be rejected.

    --2022-08-31 23:07:44-- https://isis-data.science.uva.nl/mettes/zero-shot-actions/data/kinetics/global-avg/breading_or_breadcrumbing/Ilc1pYl3zxM_000382_000392/ Reusing existing connection to isis-data.science.uva.nl:443. HTTP request sent, awaiting response... 200 OK Length: unspecified [text/html] Saving to: ‘data/kinetics/objectscores/breading_or_breadcrumbing/Ilc1pYl3zxM_000382_000392/index.html.tmp’**


    I have following queries:

    1. Is it the proper way i am doing it ?
    2. is it normal to take this long time ?
    opened by aliman80 0
Owner
null
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

null 144 Dec 24, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 4, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 3, 2023
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

null 27 Jul 20, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 9, 2022