Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Overview

Hierarchical Pretraining: Research Repository

This is a research repository for reproducing the results from the project "Self-supervised pretraining improves self-supervised pretraining." You can find the arXiv prepint here: https://arxiv.org/abs/2103.12718

Installation

# repo
git clone [email protected]:cjrd/base-training.git

# setup environment
conda create -n hpt python=3.7 ipython
conda activate hpt

# NOTE: if you are not using CUDA 10.2, you need to change the 10.2 in this file appropriately
# (check CUDA version with e.g. `cat /usr/local/cuda/version.txt`)
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch

# install local submodules
cd OpenSelfSup
pip install -v -e .

Data installation

The data you need will depend on your goals, but generally speaking, download the RESISC-45 dataset to make sure you have everything working correctly.

Pretrained Models

cd OpenSelfSup/data/basetrain_chkpts/
./download-pretrained-models.sh

RESISC-45

RESISC-45 contains 31,500 aerial images, covering 45 scene classes with 700 images in each class.

# cd to the directory where you want the data, $DATA
wget https://people.eecs.berkeley.edu/~cjrd/data/resisc45.tar.gz
tar xf resisc45.tar.gz

# replace/set $DATA and $CODE as appropriate
ln -s $DATA/resisc45 $CODE/OpenSelfSup/data/resisc45/all

Verify Install

Check installation by pretraining using mocov2, extracting the model weights, evaluating the representations, and then viewing the results:

cd OpenSelfSup

# Sanity check: MoCo for 20 epoch on 4 gpus
./tools/dist_train.sh configs/selfsup/moco/r50_v2_resisc_in_basetrain_20ep.py 4

# make some variables so its clear what's happening
CHECKPOINT=work_dirs/selfsup/moco/r50_v2_resisc_in_basetrain_20ep/epoch_20.pth
BACKBONE=work_dirs/selfsup/moco/r50_v2_resisc_in_basetrain_20ep/epoch_20_moco_in_basetrain.pth
# Extract the backbone
python tools/extract_backbone_weights.py ${CHECKPOINT} ${BACKBONE}

# Evaluate the representations
./benchmarks/dist_train_linear.sh configs/benchmarks/linear_classification/resisc45/r50_last.py ${BACKBONE}

# View the results
cd work_dirs
# you may need to install tensorboard
tensorboard --logdir .

Base Training

Right now we assume ImageNet base trained models.

cd OpenSelfSup/data/basetrain_chkpts/
./download-pretrained-models.sh

Pretraining With a New Dataset

We have a handy set of config generators to make pretraining with a new dataset easy and consistent!

FIRST, you will need the image pixel mean/std of your dataset, if you don't have it, you can do:

./compute-dataset-pixel-mean-std.py --data /path/to/image-folder --numworkers 20 --batchsize 256

where image-folder has the structure from ImageFolder in pytorch
class/image-name.jp[e]g
or whatever image extension you're using

if your dataset is not arranged in this way, you can either: (i) use symlinks to put it in this structure (ii) update the above script to read in your data

NEXT, copy the pretraining template

cd utils
cp templates/pretraining-config-template.sh pretrain-configs/my-dataset-config.sh
# edit pretrain-configs/my-dataset-config.sh

# once edited, generate the project
./gen-pretrain-project.sh pretrain-configs/my-dataset-config.sh

What just happened? We generated a bunch of pretraining configs in the following location (take a loot at all of these files to get a feel for how this works):

OpenSelfSup/configs/hpt-pretrain/${shortname}

NEXT, you're ready to kick off a trial run to make sure the pretraining is working as expected =)

# the `-t` flag means `trial`: it'll only run 1 20 epoch pretraining
 ./utils/pretrain-runner.sh -t -d OpenSelfSup/configs/hpt-pretrain/${shortname}

NEXT, if this works, kick off the full training. NOTE: you can kick this off multiple times as long as the config directories share the same filesystem

# simply removing the `-t` flag from above
 ./utils/pretrain-runner.sh -d OpenSelfSup/configs/hpt-pretrain/${shortname}

NEXT, if you want to perform BYOL pretraining, add -b flag.

# simply add the `-b` flag to above. Currently, we only do it on Chexpert, Resisc, and Bdd for Exp3
 ./utils/pretrain-runner.sh -d OpenSelfSup/configs/hpt-pretrain/${shortname} -b

Congratulations: you've launch a full hierarchical pretraining experiment.

FAQs/PROBLEMS?

  • How does pretrain-runner.sh keep track of what's been pretrained?
    • In each config directory, it creates a .pretrain-status folder to keep track of what's processing/finished. See them with e.g. find OpenSelfSup/configs/hpt-pretrain -name '.pretrain-status'
  • How to redo a pretraining, e.g. because it crashed or something changed? Remove the
    • Remove the associate .proc or .done file. Find these e.g.
    find OpenSelfSup/configs/hpt-pretrain -name '.proc'
    find OpenSelfSup/configs/hpt-pretrain -name '.done'

Evaluating Pretrained Representations

This has been simplified to simply:

./utils/pretrain-evaluator.sh -b OpenSelfSup/work_dirs/hpt-pretrain/${shortname}/ -d OpenSelfSup/configs/hpt-pretrain/${shortname}

where -b is the backbone directory and -d is the config directory. This command also works for cross-dataset evaluation (e.g. evaluate models trained on Resic45 and evaluate on UC Merced dataset).

FAQ

Where are the checkpoints and logs? E.g., if you pass in configs/hpt-pretrain/resisc as the config directory, then the working directories for this evalution is e.g. work_dirs/hpt-pretrain/resisc/linear-eval/....

Finetuning

Assuming you generated the pretraining project as specified above, finetuning is as simple as:

./utils/finetune-runner.sh -d ./OpenSelfSup/configs/hpt-pretrain/${shortname}/finetune/ -b ./OpenSelfSup/work_dirs/hpt-pretrain/${shortname}/

where -b is the backbone directory and -d is the config directory Note: to finetune using other backbones, simply pass in a different backbone directory (the script searches for final_backbone.pth files in the provided directory tree)

Finetuning only on pretrained checkpoints with BEST linear analysis

First, specify the pretraining epochs which gives the best linear evaluation result in ./utils/top-linear-analysis-ckpts.txt. Here is an example:

# dataset best-moco-bt best-sup-bt best-no-bt
chest_xray_kids 5000 10000 100000
resisc 5000 50000 100000
chexpert 50000 50000 400000

, in which for chest_xray_kids dataset, 5000-iters, 10000-iters, 100000-iters are the best pretrained models under moco base-training, imagenet-supervised base-training, and no base-training, respectively.

Second, run the following command to perform finetuning only on the best checkpoints (same as above, except that the change of script name):

./utils/finetune-runner-top-only.sh -d ./OpenSelfSup/configs/hpt-pretrain/${shortname}/finetune/ -b ./OpenSelfSup/work_dirs/hpt-pretrain/${shortname}

Pretraining on top of pretraining

Using the output of previously pretrained models, it is very easy to correctly setup pretraining on top of the pretraining. Simply create a new config

utils/pretrain-configs/dataname1-dataname2.sh

(see resisc-ucmerced.sh for an example)

and then set the basetrained models to be the final_backbone.pth from the output of the last pretrained. e.g. for using resisc-45 outputs:

export basetrain_weights=(
    "work_dirs/hpt-pretrain/resisc/moco_v2_800ep_basetrain/50000-iters/final_backbone.pth"

    "work_dirs/hpt-pretrain/resisc/imagenet_r50_supervised_basetrain/50000-iters/final_backbone.pth"

    "work_dirs/hpt-pretrain/resisc/no_basetrain/200000-iters/final_backbone.pth"
)

(see resisc-ucmerced.sh for an example)

To select which backbones to use, evaluate the linear performance from the various source outputs (e.g. all the resisc pretrained outputs) on the target data (e.g. on uc-merced data).

Then simply generate the project and execute the pretraining as normal:

./gen-pretrain-project.sh pretrain-configs/dataname1-dataname2.sh

./pretrain-runner.sh -d OpenSelfSup/configs/hpt-pretrain/$dataname1-dataname2

Object Detection / Semantic Segmentation

Object detection/segmentation uses detectron2 and takes place in the directory

OpenSelfSup/benchmarks/detection

First: Check if the dataset configs you need are already present in configs. E.g. if you're working with CoCo, you'll see the following 2 configs:

configs/coco_R_50_C4_2x.yaml
configs/coco_R_50_C4_2x_moco.yaml

We'll use the config with the _moco suffix for all obj det and segmentation. If your configs already exist, skip the next step.

Next: assuming your configs do not exist, set up the configs you need for your dataset by copying an existing set of configs

cp configs/coco_R_50_C4_2x.yaml ${MYDATA}_R50_C4_2x.yaml
cp configs/coco_R_50_C4_2x_moco.yaml ${MYDATA}_R50_C4_2x_moco.yaml

Edit ${MYDATA}_R50_C4_2x.yaml and set MIN_SIZE_TRAIN and MIN_SIZE_TEST to be appropriate for your dataset. Also, rename TRAIN and TEST to have your dataset name, set MASK_ON to True if doing semantic segmentation, and update STEPS and MAX_ITER if running the training for a different amount of time is appropriate (check relevant publications / codebases to set the training schedule).

Edit ${MYDATA}_R50_C4_2x_moco.yaml and set PIXEL_MEAN and PIXEL_STD (use compute-dataset-pixel-mean-std.py script above, if you don't know them).

Then, edit train_net.py and add the appropriate data registry lines for your train/val data

register_coco_instances("dataname_train", {}, "obj-labels-in-coco-format_train.json", "datasets/dataname/dataname_train")
register_coco_instances("dataname_val", {}, "obj-labels-in-coco-format_val.json", "datasets/dataname/dataname_val")

Then, setup symlinks to your data under datasets/dataname/dataname_train and datasets/dataname/dataname_val, where you replace dataname with your dataname used in the config/registry.

Next, convert your backbone(s) to detectron format, e.g. (NOTE: I recommend keeping backbones in the same directory that they are originally present in, and appending a -detectron2 suffix)

python convert-pretrain-to-detectron2.py ../../data/basetrain_chkpts/imagenet_r50_supervised.pth ../../data/basetrain_chkpts/imagenet_r50_supervised-detectron2.pth

Next kick off training

python train_net.py --config-file configs/DATANAME_R_50_C4_24k_moco.yaml --num-gpus 4 OUTPUT_DIR results/${UNIQUE_DATANAME_EXACTLY_DESCRIBING_THIS_RUN}/ TEST.EVAL_PERIOD 2000 MODEL.WEIGHTS ../../data/basetrain_chkpts/imagenet_r50_supervised-detectron2.pth SOLVER.CHECKPOINT_PERIOD ${INT_HOW_OFTEN_TO_CHECKPOINT}

results will be in results/${UNIQUE_DATANAME_EXACTLY_DESCRIBING_THIS_RUN}, and you can use tensorboard to view them.

Commit and Share Results

Run the following command to grab all results (linear analysis, finetunes, etc) and put them into the appropriate json results file in results/:

./utils/update-all-results.sh

You can verify the results in results and then add the new/updated results file to git and commit.

Did you get an error message such as:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Please investigate as your results may not be complete.
(see errors in file: base-training/utils/tmp/errors.txt)

will not include partial result for base-training/utils/../OpenSelfSup/work_dirs/hpt-pretrain/resisc/finetune/1000-labels/imagenet_r50_supervised_basetrain/50000-iters-2500-iter-0_01-lr-finetune/20200911_170916.log.json
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

This means that this particular evaluation run did not appear to run for enough iterations. Investigate the provided log file, rerun any necessary evaluations, and remove the offending log file.

Debugging this script this script finds the top val accuracy, and save the corresponding test accuracy using the following script:

./utils/agg-results.sh

which outputs results to utils/tmp/results.txt and errors to utils/tmp/errors.txt. Look at this file if your results aren't being generated correctly.

Generate plots

cd utils
python plot-results.py

See plots in directory plot-results (you can also pass in a --data flag to only generate plots for a specific dataset, e.g. python plot-results.py --data resisc)

To plot the eval & test acc curves, use ./utils/plot.py

cd utils
python plot.py --fname PLOT_NAME --folder FOLDER_CONTAINING_DIFFERENT_.PTH_FOLDERs

To Generate plot for full finetuning, do

bash utils/plot-results-exp-2.sh

See plot in directory plot-results/exp-2.

To Generate plot for HPT Pretraining, do

bash utils/plot-results-exp-3.sh

See plot in directory plot-results/exp-3.

Getting activations for similarity measures

Run get_acts.py with a model used for a classifaction task (one that has a test/val set).
Alternatively, run dist_get_acts as follows:

bash dist_get_acts.sh ${CFG} ${CHECKPOINT} [--grab_conv...]

Default behavior is to grab the entire batch of linear layers. Setting --grab_conv will capture a single batch of all convolutional layers.
Layers will be saved in ${WORK_DIR}/model_acts.npz. The npz contains a dictionary which maps layer names to the activations. TODO: add similarity documentation. Similarity measures will be a seperate PR.

Important Notes:

  • If not using the provided experiment management scripts: add a new config file for each base training, even small variations, since the evaluation stage assumes a unique filename for each config (otherwise the checkpoints will overwrite the .previous versions).
  • If not using 4 GPUs, update the learning rate to new_lr = old_lr * new_ngpus / 4

Adding new repositories

  1. Add new repositories as a subtree to the base repository (next to this readme), e.g. this is what I used for OpenSelfSup (subtree cheatsheet):
git remote add openselfsup [email protected]:open-mmlab/OpenSelfSup.git
git fetch openselfsup
git subtree add --prefix=OpenSelfSup openselfsup/master --squash
  1. After updating your conda env for the new repo, update the conda-env.yml file as follows:
conda env export --from-history > conda-env.yml

Debugging and Developing Within OpenSelfSup

Here's a command that will allow breakpoints (WARNING: the results with the debug=true flag SHOULD NOT BE USED -- they disable sync batch norms and are not comparable to other results):

# from OpenSelfSup/
# replace with your desired config
python tools/train.py configs/hpt-pretrain/resisc/moco_v2_800ep_basetrain/500-iters.py --work_dir work_dirs/debug --debug

You might also like...
 Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.)

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

Official repository for the paper
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer This repository contains the source code of our work on designing efficient CNNs for computer vision
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Build fully-functioning computer vision models with PyTorch
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Comments
  • finding repo and files for setting up training

    finding repo and files for setting up training

    Hi,

    I'm working on recreating your pipeline for xview and resisc45 data. However, I cannot find this repo:git clone [email protected]:cjrd/base-training.git

    And I also cannot find the file download-pretrained-models.sh in that is supporsed to be in OpenSelfSup/data/basetrain_chkpts/

    Also, in the resisc45 folder, I cannot find the train-val.txt/ all.txt. Is this to be downloaded with the data or do I get it from somewhere else?

    opened by nikky4D 0
  • chexpert config file (BYOL)

    chexpert config file (BYOL)

    Hi, thanks for the great work!

    I have some questions about training BYOL on chexpert dataset.

    1. why the number of iterations is multiplied by 2 in the config file? I am asking this because based on the code we have another multiplication by 2 because of the 'update_interval' which is 2 for BYOL. For example, to train with 50k iterations, the total number of iterations for training will be 50k x 2 x 2 (update_interval) = 200k.

    2. what is the default number of GPUs to train BYOL? Is that 4 with a batch size of 128 (imgs_per_gpu=32)?

    3. why 'lr' is set to '4.8/16'. Is it related to the number of GPUs?

    opened by Mehrdad-Noori 0
Owner
Colorado Reed
CS PhD student at Berkeley
Colorado Reed
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

null 368 Dec 26, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-trained models.

GMUM 90 Jan 8, 2023
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

null 81 Dec 15, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022