​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

Related tags

Deep Learning PAMA
Overview

PAMA

​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

Requirements

  • python 3.6
  • pytorch 1.2.0+
  • PIL, numpy, matplotlib

Checkpoints

Please download the pre-trained checkpoints at google drive and put them in ./checkpoints.

Here we also provide some other pre-trained results with different loss weights:

Type Loss Download
high consistency w/o color loss PAMA_consistency.pth
high style 2x style loss PAMA_style.pth
high content 2x content loss PAMA_content.pth

The checkpionts will be uploaded recently.

Training

The training set consists of two parts, the content images from COCO2014 and style images from Wikiart.

python main.py train --lr 1e-4 --content_folder ./COCO2014 --style_folder ./Wikiart

Testing

To test the code, you need to specify the path of the content image and the style image.

python main.py eval --content ./content/1.jpg --style ./style/1.jpg

If you want to do a batch operation for all pictures under the folder at one time, please execute the following code.

python main.py eval --run_folder True --content ./content/ --style ./style/

Results Presentation

​ The results prove the quality of PAMA from three dimensions: Regional Consistency, Content Proservation, Style Quality.

Regional Consistency

39-13-content

8-35-content

Content preservation

18-4-content

27-8-consistency

Style Quality

4-29-style

13-32-style

Other Results

other

You might also like...
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

PyTorch inference for
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

Official pytorch code for
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Pytorch implementation for
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

PyTorch implementation of
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

Comments
  • run eval but got gray image

    run eval but got gray image

    python main.py eval the content and sample images are the example on website https://huggingface.co/spaces/akhaliq/PAMA and the weights is download from google drive named <original_PAMA.zip> The program does not report an error but I got a gray image

    image

    And I found that the website provided could not return results, and each time it ended with error image

    opened by WuChuYi 1
  • Question about Content/Style Loss

    Question about Content/Style Loss

    Hi @luoxuan-cs, I am interested in your research. So I have some questions:

    1. Why content loss is different from style loss. Why don't use self-similarity loss for style loss?
    2. In Eq. 8, can I use mean and std instead of mean and covariance?

    Hope to hear from you soon.

    opened by sonnguyen129 0
Owner
null
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 3, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 2, 2021
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

null 559 Dec 14, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 6, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 6, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

null 31 Dec 5, 2022