Codebase for Diffusion Models Beat GANS on Image Synthesis.

Overview

guided-diffusion

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This repository is based on openai/improved-diffusion, with modifications for classifier conditioning and architecture improvements.

Download pre-trained models

We have released checkpoints for the main models in the paper. Before using these models, please review the corresponding model card to understand the intended use and limitations of these models.

Here are the download links for each model checkpoint:

Sampling from pre-trained models

To sample from these models, you can use the classifier_sample.py, image_sample.py, and super_res_sample.py scripts. Here, we provide flags for sampling from all of these models. We assume that you have downloaded the relevant model checkpoints into a folder called models/.

For these examples, we will generate 100 samples with batch size 4. Feel free to change these values.

SAMPLE_FLAGS="--batch_size 4 --num_samples 100 --timestep_respacing 250"

Classifier guidance

Note for these sampling runs that you can set --classifier_scale 0 to sample from the base diffusion model. You may also use the image_sample.py script instead of classifier_sample.py in that case.

  • 64x64 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --dropout 0.1 --image_size 64 --learn_sigma True --noise_schedule cosine --num_channels 192 --num_head_channels 64 --num_res_blocks 3 --resblock_updown True --use_new_attention_order True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 1.0 --classifier_path models/64x64_classifier.pt --model_path models/64x64_diffusion.pt $SAMPLE_FLAGS
  • 128x128 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 128 --learn_sigma True --noise_schedule linear --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 0.5 --classifier_path models/128x128_classifier.pt --model_path models/128x128_diffusion.pt $SAMPLE_FLAGS
  • 256x256 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 1.0 --classifier_path models/256x256_classifier.pt --model_path models/256x256_diffusion.pt $SAMPLE_FLAGS
  • 256x256 model (unconditional):
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 10.0 --classifier_path models/256x256_classifier.pt --model_path models/256x256_diffusion.pt $SAMPLE_FLAGS
  • 512x512 model:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 512 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 False --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 4.0 --classifier_path models/512x512_classifier.pt --model_path models/512x512_diffusion.pt $SAMPLE_FLAGS

Upsampling

For these runs, we assume you have some base samples in a file 64_samples.npz or 128_samples.npz for the two respective models.

  • 64 -> 256:
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --large_size 256  --small_size 64 --learn_sigma True --noise_schedule linear --num_channels 192 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python super_res_sample.py $MODEL_FLAGS --model_path models/64_256_upsampler.pt --base_samples 64_samples.npz $SAMPLE_FLAGS
  • 128 -> 512:
MODEL_FLAGS="--attention_resolutions 32,16 --class_cond True --diffusion_steps 1000 --large_size 512 --small_size 128 --learn_sigma True --noise_schedule linear --num_channels 192 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python super_res_sample.py $MODEL_FLAGS --model_path models/128_512_upsampler.pt $SAMPLE_FLAGS --base_samples 128_samples.npz

LSUN models

These models are class-unconditional and correspond to a single LSUN class. Here, we show how to sample from lsun_bedroom.pt, but the other two LSUN checkpoints should work as well:

MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --dropout 0.1 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python image_sample.py $MODEL_FLAGS --model_path models/lsun_bedroom.pt $SAMPLE_FLAGS

You can sample from lsun_horse_nodropout.pt by changing the dropout flag:

MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --dropout 0.0 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python image_sample.py $MODEL_FLAGS --model_path models/lsun_horse_nodropout.pt $SAMPLE_FLAGS

Note that for these models, the best samples result from using 1000 timesteps:

SAMPLE_FLAGS="--batch_size 4 --num_samples 100 --timestep_respacing 1000"

Results

This table summarizes our ImageNet results for pure guided diffusion models:

Dataset FID Precision Recall
ImageNet 64x64 2.07 0.74 0.63
ImageNet 128x128 2.97 0.78 0.59
ImageNet 256x256 4.59 0.82 0.52
ImageNet 512x512 7.72 0.87 0.42

This table shows the best results for high resolutions when using upsampling and guidance together:

Dataset FID Precision Recall
ImageNet 256x256 3.94 0.83 0.53
ImageNet 512x512 3.85 0.84 0.53

Finally, here are the unguided results on individual LSUN classes:

Dataset FID Precision Recall
LSUN Bedroom 1.90 0.66 0.51
LSUN Cat 5.57 0.63 0.52
LSUN Horse 2.57 0.71 0.55

Training models

Training diffusion models is described in the parent repository. Training a classifier is similar. We assume you have put training hyperparameters into a TRAIN_FLAGS variable, and classifier hyperparameters into a CLASSIFIER_FLAGS variable. Then you can run:

mpiexec -n N python scripts/classifier_train.py --data_dir path/to/imagenet $TRAIN_FLAGS $CLASSIFIER_FLAGS

Make sure to divide the batch size in TRAIN_FLAGS by the number of MPI processes you are using.

Here are flags for training the 128x128 classifier. You can modify these for training classifiers at other resolutions:

TRAIN_FLAGS="--iterations 300000 --anneal_lr True --batch_size 256 --lr 3e-4 --save_interval 10000 --weight_decay 0.05"
CLASSIFIER_FLAGS="--image_size 128 --classifier_attention_resolutions 32,16,8 --classifier_depth 2 --classifier_width 128 --classifier_pool attention --classifier_resblock_updown True --classifier_use_scale_shift_norm True"

For sampling from a 128x128 classifier-guided model, 25 step DDIM:

MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --image_size 128 --learn_sigma True --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
CLASSIFIER_FLAGS="--image_size 128 --classifier_attention_resolutions 32,16,8 --classifier_depth 2 --classifier_width 128 --classifier_pool attention --classifier_resblock_updown True --classifier_use_scale_shift_norm True --classifier_scale 1.0 --classifier_use_fp16 True"
SAMPLE_FLAGS="--batch_size 4 --num_samples 50000 --timestep_respacing ddim25 --use_ddim True"
mpiexec -n N python scripts/classifier_sample.py \
    --model_path /path/to/model.pt \
    --classifier_path path/to/classifier.pt \
    $MODEL_FLAGS $CLASSIFIER_FLAGS $SAMPLE_FLAGS

To sample for 250 timesteps without DDIM, replace --timestep_respacing ddim25 to --timestep_respacing 250, and replace --use_ddim True with --use_ddim False.

You might also like...
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

 Learning Energy-Based Models by Diffusion Recovery Likelihood
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Comments
  • Fix setuptools installation

    Fix setuptools installation

    Installing directly from pip isn't working because setup.py lists 'py_modules="guided_diffusion', rather than 'package=["guided_diffusion"]'

    opened by ahupp 1
  • Make package available globally when installed

    Make package available globally when installed

    Hi! Made a little edit in setup.py such that the package is available globally when installed.

    Instead of doing this in the diffusion notebooks:

    !git clone https://github.com/crowsonkb/guided-diffusion
    !pip install -e ./guided-diffusion
    sys.path.append('./guided-diffusion')
    

    You can do without manually adding the folder to path, simplifying to just this:

    !pip install git+https://github.com/crowsonkb/guided-diffusion
    
    opened by tnwei 0
Owner
Katherine Crowson
AI/generative artist.
Katherine Crowson
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 6, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 4, 2023
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 7, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 4, 2023
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

null 31 Sep 27, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 1, 2023
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

null 172 Dec 23, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 2, 2023