Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Overview

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision

1. Framework

Figure 1: Illustration of the proposed joint learning framework.

2. Results

Figure 2: Example of data pairs of ZRR and SR-RAW datasets, where clear spatial misalignment can be observed with the reference line. With such inaccurately aligned training data, PyNet [22] and Zhang et al. [62] are prone to generating blurry results with spatial misalignment, while our results are well aligned with the input.

3. Preparation

  • 3.1 Prerequisites

    • PyTorch (v1.6)
    • Python 3.x, with OpenCV, Numpy, CuPy, Pillow and tqdm, and tensorboardX is used for visualization
  • 3.2 Dataset - Zurich RAW to RGB dataset and SR-RAW Dataset are used for experiments.

4. Quick Start

We show some exemplar commands here for better introduction.

4.1 Training

  • Zurich RAW to RGB dataset

    python train.py \
    --dataset_name eth    --model zrrjoint    --name $name          --gcm_coord True  \
    --ispnet_coord True   --niter 80          --lr_decay_iters 40   --save_imgs False \
    --batch_size 16       --print_freq 300    --calc_psnr True      --lr 1e-4   -j 8  \
    --dataroot /data/dataset/Zurich-RAW-to-DSLR 
  • SR-RAW Dataset

    To be continued...

4.2 Testing

  • The pre-trained models will be released soon.

  • Zurich RAW to RGB dataset

    python test.py \
    --model zrrjoint    --name zrrjoint    --dataset_name eth   --ispnet_coord True  --alignnet_coord True \
    --load_iter 80      --save_imgs True  --calc_psnr True      --gpu_id 0           --visual_full_imgs False \
    --dataroot /data/dataset/Zurich-RAW-to-DSLR
  • SR-RAW Dataset

    To be continued...

4.3 Note

  • You can specify which GPU to use by --gpu_ids, e.g., --gpu_ids 0,1, --gpu_ids 3, --gpu_ids -1 (for CPU mode). In the default setting, all GPUs are used.
  • You can refer to options for more arguments.

5. Citation

If you find it useful in your research, please consider citing:

@inproceedings{RAW-to-sRGB,
    title={Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision},
    author={Zhang, Zhilu and Wang, Haolin and Liu, Ming and Wang, Ruohao and Zuo, Wangmeng and Zhang, Jiawei},
    booktitle={ICCV},
    year={2021}
}

6. Acknowledgement

This repo is built upon the framework of CycleGAN, and we borrow some code from PyNet, Zoom-Learn-Zoom, PWC-Net and AdaDSR, thanks for their excellent work!

You might also like...
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of spatial misalignment in predictions between the two tasks.

Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a pseudo-rigid domain.

This repository contains the code for the paper
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

 Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

Comments
  • Questions about the use of PWC-Net. Looking forward to your reply.

    Questions about the use of PWC-Net. Looking forward to your reply.

    It's an excellent work! I have two questions to ask: (1) Did you directly load the weight of pytorch-pwc(https://github.com/sniklaus/pytorch-pwc) to estimate optical flow? Have you fine-tuned on your own dataset? (2) When I warp the image with the output optical flow estimated by pytorch-pwc, there are duplicates (as shown below). Have you encountered this problem? AU RMGQV$SXUAV)65VAUU}1 Thanks! Looking forward to your reply.

    opened by GitHub0830 4
  • the datasets you upload are not complete.

    the datasets you upload are not complete.

    image

    I download the SR-raw datasets, but find there is no xxxx002.zip. it is weird.

    then I unzip the folder, I find some train folder uncomplate indeed. image image

    opened by UESTCrookieLI 1
Owner
Zhilu Zhang
Harbin Institute of Technology
Zhilu Zhang
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 4, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

null 58 Jan 6, 2023
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 3, 2023
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 1, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022