Viewflow is an Airflow-based framework that allows data scientists to create data models without writing Airflow code.

Overview

Viewflow

Viewflow is a framework built on the top of Airflow that enables data scientists to create materialized views. It allows data scientists to focus on the logic of the view creation in their preferred tool (e.g., SQL, Python).

Viewflow automatically creates Airflow DAGs and tasks based on SQL or Python files.

One of the major features of Viewflow is its ability to manage tasks' dependencies, i.e., views used to create another view. Viewflow can automatically extract from the code (SQL query or Python script) the internal and external dependencies. An internal dependency is a view that belongs to the same DAG as a view being created. An external dependency is a view that belongs to a different DAG. The benefits of automatic dependency management are twofold: First, data scientists don't have to manually list dependencies, usually an error-prone process. Second, it makes sure that no view is built on stale data (because all dependent views will be updated beforehand).

Currently, Viewflow supports SQL and Python views and PostgreSQL/Redshift as a destination. We will continue improving Viewflow by adding new view types (e.g., R, Jupyter Notebooks, ...) and destination (e.g., Snowflake, BigQuery, ...).

Viewflow demo

We created a demo that shows how Viewflow works. The demo creates two DAGs: viewflow-demo-1 and viewflow-demo-2. These DAGs create a total of four views in a local Postgres database. Check out the view files in demo/dags/.

Run the demo

We use docker-compose to instantiate an Apache Airflow instance and a Postgres database. The Airflow container and the Postgres container are defined in the docker-compose.yml file. The first time you want to run the demo, you will first have to build the Apache Airflow docker image that embeds Viewflow:

docker-compose build

Then run the docker containers:

docker-compose up

Go to your local Apache Airflow instance on http://localhost:8080. There are two DAGs called viewflow-demo-1 and viewflow-demo-2:

By default, the DAGs are disabled. Turn the DAGs on by clicking on the button Off. It'll trigger the DAGs.

Query the views

Once the DAGs have run and all tasks completed, you can query the views created by Viewflow in the local Postgres database created by Docker. You can use any Postgres client (note that Postgres is running locally on port 5433):

psql -h localhost -p 5433 -U airflow -d airflow

Use airflow when psql asks you for the user password.

There is a schema named viewflow_raw and a schema named viewflow_demo. The first one contains three tables: users, courses, and user_course. They are considered as the raw data. The second schema, viewflow_demo, is the schema in which the views created by Viewflow are stored.

\dn

+---------------+---------+
| Name          | Owner   |
|---------------+---------|
| public        | airflow |
| viewflow_demo | airflow |
| viewflow_raw  | airflow |
+---------------+---------+

Viewflow created four views: user_xp (SQL), user_enriched (SQL), course_enriched (SQL) and top_3_user_xp (Python)

\dt viewflow_demo.

+---------------+-----------------+--------+---------+
| Schema        | Name            | Type   | Owner   |
|---------------+-----------------+--------+---------|
| viewflow_demo | course_enriched | table  | airflow |
| viewflow_demo | top_3_user_xp   | table  | airflow |
| viewflow_demo | user_enriched   | table  | airflow |
| viewflow_demo | user_xp         | table  | airflow |
+---------------+-----------------+--------+---------+

You can query these tables to see their data:

select * from viewflow_demo.user_xp;

+-----------+------+-----------------------+
| user_id   | xp   | __view_generated_at   |
|-----------+------+-----------------------|
| 1         | 750  | 2021-03-17            |
| 2         | 200  | 2021-03-17            |
| 3         | 550  | 2021-03-17            |
| 4         | 500  | 2021-03-17            |
| 5         | 650  | 2021-03-17            |
| 6         | 430  | 2021-03-17            |
| 7         | 300  | 2021-03-17            |
| 8         | 280  | 2021-03-17            |
| 9         | 100  | 2021-03-17            |
| 10        | 350  | 2021-03-17            |
+-----------+------+-----------------------+

You can also access the tables' comment (both table and columns):

select obj_description('viewflow_demo.user_enriched'::regclass) as view_description;

+---------------------------------------------+
| view_description                            |
|---------------------------------------------|
| A table that enriched information on a user |
+---------------------------------------------+
select
   column_name,
   col_description((table_schema||'.'||table_name)::regclass::oid, ordinal_position) as column_comment
 from
   information_schema.columns
 where
   table_schema = 'viewflow_demo'
 and
   table_name = 'user_enriched';

+--------------------------+-----------------------------------------------+
| column_name              | column_comment                                |
|--------------------------+-----------------------------------------------|
| user_id                  | The user id                                   |
| xp                       | The user amount of XP                         |
| last_course_completed_at | When was the last course completed by a user  |
| last_course_completed    | Name of the latest completed course by a user |
| number_courses_completed | Number of completed courses by a user         |
| __view_generated_at      | <null>                                        |
+--------------------------+-----------------------------------------------+

And that's it! Congrats on running the demo 🚀 If you want to play more with Viewflow, follow the installation instructions below.

Installation instructions

✉️ If you have any issue with the installation, configuration, or creation of your DAGs, do not hesitate to contact us!

The current installation process requires you to install Viewflow from the GitHub repository:

RUN pip install git+https://github.com/datacamp/viewflow.git 

Create a new DAG

Viewflow creates the DAGs automatically based on configuration files.

Here are the steps to create a DAG for the first time.

Create the Viewflow main script

In your Airflow DAG directory (usually $AIRFLOW_HOME/dags), create a python script called viewflow-dags.py that contains the following Python code:

from viewflow import create_dags

DAG = create_dags("./dags", globals(), "<views_schema_name>")

This script is executed by Airflow. It calls the main Viewflow function that creates your DAGs. The first parameter is the directory in which your dag folders are located. The third parameter is the schema name in your data warehouse, where your views will be materialized.

Create an Airflow connection to your destination

Viewflow needs to know where to write the views. It uses an Airflow connection that is referred to in the view files. Currently, viewflow supports Postgres (or Redshift) data warehouses. Please look at the Airflow documentation to create a Postgres connection.

Create your DAG directories

In Viewflow, the DAGs are created based on a configuration file and on the SQL and Python files in the same directory.

In $AIRFLOW_HOME/dags/, create a directory called my-first-viewflow-dag. In this directory, create a config.yml file that contains the following yml fields:

default_args:
    owner: <owner>@dag.com
    retries: 1
schedule_interval: 0 6 * * *
start_date: "2021-01-01"

Adapt the values of each element to what suits you. The default_args element contains the Airflow default DAG parameters.

The schedule_interval and start_date elements are the Viewflow counterparts of Airflow's schedule_interval and start_date.

You can now add your SQL and Python files in this directory (see sections below). This will create in Airflow a new DAG called my-first-viewflow-dag that will be triggered every day at 6 AM UTC as of January 1, 2021. All failed tasks will be retried once.

SQL views

A SQL view is created by a SQL file. This SQL file must contain the SQL query (as a SELECT statement) of your view and some metadata about your view. Here's an example:

/* 
---
owner: name-of-the-view-owner
description: A description of your view. It's used as the view's description in the database
fields:
  email: Description of your column -- used as the view column's description in the database
schema: schema_name_in_your_destination (e.g. viewflow_demo)
connection_id: airflow_destination_connection
--- 
*/

SELECT DISTINCT email FROM viewflow_raw.users

Python views

Please note that the implementation of the Python view should be considered as beta. It is a newer implementation of the Python view that we use at DataCamp.

A Python view is created based on a Python script. This script must contain at least one function with the view's description metadata in its docstring, which returns a Pandas dataframe.

Here's an example of a Python view:

import pandas as pd

def python_view(db_engine):
    """
    ---
    owner: name-of-the-view-owner
    description: A description of your view. It's used as the view's description in the database
    fields:
        email: Description of your column -- used as the view column's description in the database
    schema: schema_name_in_your_destination (e.g. viewflow_demo)
    connection_id: airflow_destination_connection
    ---
    """
    df = pd.read_sql_table("users", db_engine, schema="viewflow_raw")
    return df[["email"]]

Please note that Viewflow expects the Python function that creates the view to have the parameter db_engine (used to connect to the database). You don't have to set db_engine anywhere. Viewflow takes care of setting this variable.

View metadata

Viewflow expects some metadata. Here are the fields that should be included in a yml format:

  • owner: The owner of the view (i.e., who is view responsible). The owner appears in Airflow and allows users to know who they should talk to if they have some questions about the view.
  • description: What is the view about. Viewflow uses this field as a view comment in the database. The description can be retrieved in SQL (see Section Query the views).
  • fields (list): Description of each column of the view. Viewflow uses these fields as column comments in the database. The column descriptions can be retrieved in SQL (see Section Query the views).
  • schema: The name of the schema in which Viewflow creates the view. It's also used by Viewflow to create the dependencies.
  • connection_id: Airflow connection name used to connect to the database (See Section Create an Airflow connection to your destination).

Contributing to Viewflow

We welcome all sorts of contributions, be it new features, bug fixes or documentation, we encourage you to create a new PR. To create a new PR or to report new bugs, please read how to contribute to Viewflow.

In the remainder of this section, we show you how to prepare your environment to contribute to Viewflow.

Install Poetry

See https://python-poetry.org/docs/#osx-linux-bashonwindows-install-instructions for comprehensive documentation.

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python

Install the dependencies

poetry install

Prepare your environment to run the tests

Postgres

Use docker compose to set up a PostgreSQL database locally (password: passw0rd):

docker-compose -f docker-compose-test.yml up

If you get a message saying that port 5432 is in use, it means you have a different PostgreSQL server running on your machine. If you used homebrew to install it, you could use brew services stop postgresql to stop the other server.

Import the fixtures into the local database:

psql -U user -W -h localhost -f tests/fixtures/load_postgres.sql -d viewflow

Run Pytest

Before you can run the following command, you will have to have an airflow sqlite database. Run

poetry run airflow initdb

then,

poetry run pytest

Other useful commands include:

poetry run airflow resetdb # In case the database connection is set up incorrectly

Viewflow architecture

We built Viewflow around three main components: the parser, the adapter, and the dependency extractor.

The parser transforms a source file (e.g., SQL, Rmd, Python) that contains the view's metadata (e.g., view's owner, view's descriptions, and column's descriptions) and the view's code into a specific Viewflow data structure. The data structure is used by the other components in the Viewflow architecture: the adapter and the dependency creator.

The adapter is the translation layer of Viewflow's views to their corresponding Airflow counterpart. It uses the data structure objects created by the parser to create an Airflow task object (i.e., an Airflow operator).

Finally, the dependency extractor uses the parser's data structure objects to set the internal and external dependencies to the Airflow task object created by the adapter.

This architecture allows us to add new source file types in the future easily (e.g., Python notebook, R markdown).

Acknowledgments

Today's version of Viewflow is the result of a joint effort of ex and current DataCampers. We would like to thank in particular the following persons who significantly contributed to Viewflow:

Comments
  • Callbacks for tasks

    Callbacks for tasks

    A description of the new functionality is added to the README under the subtitle 'Configuring callbacks'. In a nutshell, any number of callback functions can be defined viewflow/task_callbacks.py The default callbacks can be overwritten on the DAG-level, but also for a specific task.

    The functionality has been tested successfully (in tests/test_callbacks.py).

    opened by pietervans 0
  • R and Rmd adapters

    R and Rmd adapters

    Full support for R and Rmd scripts is implemented.

    The R and Rmd scripts are converted as following:

    1. Parsing
    2. The scripts are extended. R code for connecting to the database, reading the necessary tables and writing the new view to the database is automatically added. The extended scripts are saved in the $AIRFLOW_HOME/data directory
    3. The ROperator and RmdOperator simply execute the extended scripts

    The constraints on the scripts are analogous to the existing SQL and Python adaptors:

    • filename of the script = name of the view
    • each script generates exactly 1 view

    The Rmd scripts are an exception to these constraints. By default, an Rmd script is simply executed as is. This is what DataCamp currently expects. By adding automate_read_write: True to the metadata, Rmd scripts will behave just like R scripts.

    Both adapters will by default expect views to be referenced as <schema_name>.<table_name> This default behaviour can be changed by adding a new function in dependencies_r_patterns and adding a line dependency_function: custom_function to the metadata of the R(md) script.

    The format of the referenced tables is important for two applications:

    1. Extending the script to automatically read/write to the database (optional for Rmd)
    2. Figuring out the dependencies for the DAG

    The task top_3_user_xp_duplicate.Rmd contains an explanation of the implemented mechanism for Rmd scripts.

    2 simple DAGs have been added to demonstrate the R(md) adapters: viewflow-demo-[3|4]. Some unit tests have also been added. The README.md does not yet explain anything on the R(md) adapters as changes are still likely.

    opened by pietervans 0
  • Compatibility with Airflow 2 and Airflow 1.10

    Compatibility with Airflow 2 and Airflow 1.10

    The demo and tests work with both Airflow 2 and Airflow 1.10. The instructions in README.md are updated. I also added a few links to documentation/posts for troubleshooting that have been useful for me.

    As a new user will use Airflow 2, this is the default option. The files that are different for Airflow 1.10 have been put in the [email protected] directory.

    opened by pietervans 0
  • Compatibility with Airflow 1.10 & 2

    Compatibility with Airflow 1.10 & 2

    The tests now run successfully on mulitple Airflow versions. I tested Airflow 1.10.12 and 2.1.1

    There are still a few remaining warnings, but they are caused by the other packages that are used. If using Airflow 2, there's only 1 warning caused by the sqlalchemy package.

    The README.md file is also updated to contain valid instructions for Airflow versions 1.10.12 through 2.1.1.

    opened by pietervans 0
  • Incremental updates for materialized view

    Incremental updates for materialized view

    Implementation of incremental updates built on the existing SQL Postgres operator. An explanation of the use case and usage of the operator can be found in the README.md file (subtitle: 'Incremental updates').

    Successfully tested: tests/adapters/test_postgres_incremental.py

    An example task is also included in the Docker demo: demo/dags/viewflow-demo-2/emails_blog.sql. I changed the folder structure of the DAGs in the demo a bit to be more intuitive.

    opened by pietervans 0
Releases(v0.1.0)
  • v0.1.0(Jul 23, 2021)

    Viewflow allows creating materialized views based on scripts without having to write any Airflow code!

    • Support for SQL and Python scripts
    • Compatibility with Airflow 1.10 and Airflow 2
    Source code(tar.gz)
    Source code(zip)
Owner
DataCamp
DataCamp
Yet another Airflow plugin using CLI command as RESTful api, supports Airflow v2.X.

中文版文档 Airflow Extended API Plugin Airflow Extended API, which export airflow CLI command as REST-ful API to extend the ability of airflow official API

Eric Cao 106 Nov 9, 2022
Tool to generate wrappers for Linux libraries allowing for dlopen()ing them without writing any boilerplate

Dynload wrapper This program will generate a wrapper to make it easy to dlopen() shared objects on Linux without writing a ton of boilerplate code. Th

Hein-Pieter van Braam 25 Oct 24, 2022
WriteAIr is a website which allows users to stream their writing.

WriteAIr is a website which allows users to stream their writing. It uses HSV masking to detect a pen which the user writes with. Plus, users can select a wide range of options through hand gestures! The notes created can then be saved as images and uploaded on the server.

Atharva Patil 1 Nov 1, 2021
A Python library that helps data scientists to infer causation rather than observing correlation.

A Python library that helps data scientists to infer causation rather than observing correlation.

QuantumBlack Labs 1.7k Jan 4, 2023
The RAP community of practice includes all analysts and data scientists who are interested in adopting the working practices included in reproducible analytical pipelines (RAP) at NHS Digital.

The RAP community of practice includes all analysts and data scientists who are interested in adopting the working practices included in reproducible analytical pipelines (RAP) at NHS Digital.

NHS Digital 50 Dec 22, 2022
A data engineering project with Kafka, Spark Streaming, dbt, Docker, Airflow, Terraform, GCP and much more!

Streamify A data pipeline with Kafka, Spark Streaming, dbt, Docker, Airflow, Terraform, GCP and much more! Description Objective The project will stre

Ankur Chavda 206 Dec 30, 2022
A python library for writing parser-based interactive fiction.

About IntFicPy A python library for writing parser-based interactive fiction. Currently in early development. IntFicPy Docs Parser-based interactive f

Rita Lester 31 Nov 23, 2022
Small exercises to get you used to reading and writing Python code!

Pythonlings Welcome to Pythonlings, an automated Python tutorial program (inspired by Rustlings and Haskellings). WIP This program is still working in

鹤翔万里 5 Sep 23, 2022
This repository requires you to solve a problem by writing some basic python code.

Can You Solve a Problem? A beginner friendly repository that requires you to solve familiar problems with python. This could be as simple as implement

Precious Kolawole 11 Nov 30, 2022
Create or join a private chatroom without any third-party middlemen in less than 30 seconds, available through an AES encrypted password protected link.

PY-CHAT Create or join a private chatroom without any third-party middlemen in less than 30 seconds, available through an AES encrypted password prote

null 1 Nov 24, 2021
Airflow Operator for running Soda SQL scans

Airflow Operator for running Soda SQL scans

Todd de Quincey 7 Oct 18, 2022
Project repository of Apache Airflow, deployed on Docker in Amazon EC2 via GitLab.

Airflow on Docker in EC2 + GitLab's CI/CD Personal project for simple data pipeline using Airflow. Airflow will be installed inside Docker container,

Ammar Chalifah 13 Nov 29, 2022
A tutorial presents several practical examples of how to build DAGs in Apache Airflow

Apache Airflow - Python Brasil 2021 Este tutorial apresenta vários exemplos práticos de como construir DAGs no Apache Airflow. Background Apache Airfl

Jusbrasil 14 Jun 3, 2022
An Airflow operator to call the main function from the dbt-core Python package

airflow-dbt-python An Airflow operator to call the main function from the dbt-core Python package Motivation Airflow running in a managed environment

Tomás Farías Santana 93 Jan 8, 2023
Repositório para estudo do airflow

airflow-101 Repositório para estudo do airflow Docker criado baseado no tutorial Exemplo de API da pokeapi Para executar clone o repo execute as confi

Gabriel (Gabu) Bellon 1 Nov 23, 2021
A reproduction repo for a Scheduling bug in AirFlow 2.2.3

A reproduction repo for a Scheduling bug in AirFlow 2.2.3

Ilya Strelnikov 1 Feb 9, 2022
pyreports is a python library that allows you to create complex report from various sources

pyreports pyreports is a python library that allows you to create complex reports from various sources such as databases, text files, ldap, etc. and p

Matteo Guadrini aka GU 78 Dec 13, 2022
Just some mtk tool for exploitation, reading/writing flash and doing crazy stuff

Just some mtk tool for exploitation, reading/writing flash and doing crazy stuff. For linux, a patched kernel is needed (see Setup folder) (except for read/write flash). For windows, you need to install zadig driver and replace pid 0003 / pid 2000 driver.

Bjoern Kerler 1.1k Dec 31, 2022
App and Python library for parsing, writing, and validation of the STAND013 file format.

python-stand013 python-stand013 is a Python app and library for parsing, writing, and validation of the STAND013 file format. Features The following i

Oda 3 Nov 9, 2022