REST
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies.
Usage
Download dataset
Download datasets: Ciao, Epinions, Yelp
Then unzip them into the directory datasets
and run preprocess_yelp.py
.
└── datasets
├── Ciao
│ ├── rating_with_timestamp.mat
│ ├── trust.mat
├── Epinions
│ ├── rating_with_timestamp.mat
│ ├── trust.mat
├── Yelp
│ ├── yelp_academic_dataset_review.json
│ ├── yelp_academic_dataset_user.json
│ ├── noiso_reid_u2uir.npz
│ ├── ...
Run
python ./run_rate/run_rest_rate_ciao.py
During the training, we can obtain some logs and model-checkpoints in the directory logs
and saved_models
,
Results
Model | Ciao RMSE | Epinions RMSE | Yelp RMSE |
---|---|---|---|
PMF | 1.1936±0.0019 | 1.2755±0.0022 | 1.2454±0.0011 |
NeuMF | 0.9828±0.0022 | 1.0838±0.0015 | 1.1958±0.0005 |
MultiVAE | 1.1908±0.0014 | 1.2104±0.0039 | 1.2944±0.0020 |
RecVAE | 1.1787±0.0022 | 1.1946±0.0038 | 1.2385±0.0014 |
CausE | 1.0003±0.0013 | 1.0705±0.0013 | 1.2039±0.0015 |
CVIB-MF | 1.2001±0.0011 | 1.2477±0.0003 | 1.3189±0.0024 |
CVIB-NCF | 1.0462±0.0013 | 1.2477±0.0003 | 1.3613±0.0043 |
MACR-MF | 1.1859±0.0030 | 1.2364±0.0031 | 1.2344±0.0004 |
DecRS | 0.9875±0.0033 | 1.0617±0.0033 | - |
GraphRec | 0.9743±0.0021 | 1.0567±0.0019 | 1.1968±0.0017 |
NGCF | 1.0135±0.0010 | 1.1286±0.0017 | 1.2231±0.0017 |
LightGCN | 1.1919±0.0014 | 1.2025±0.0005 | 1.2444±0.0019 |
REST | 0.9635±0.0009 | 1.0413±0.0007 | 1.1733±0.0006 |
Detailed results can be found in the paper.