CariMe-pytorch
The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations"
CariMe: Unpaired Caricature Generation with Multiple Exaggerations
Zheng Gu, Chuanqi Dong, Jing Huo, Wenbin Li, and Yang Gao
Prerequisites
- Python 3.6
- Pytorch 1.5.1
- scikit-image 0.17.2
Preparing Dataset
- Get the Webcaricature dataset, unzip the dataset to the
data
folder and align the dataset by running the following script:
python alignment.py
Training
Train the Warper:
python train_warper.py
Train the Styler:
python train_styler.py
Testing
- Test the Warper only:
python test_warper.py --scale 1.0
- Test the Styler only:
python test_styler.py
- Generate caricatures with both exaggeration and style transfer:
python main_generate.py --model_path_warper pretrained/warper.pt --model_path_styler pretrained/styler.pt
- Generate caricatures with both exaggeration and style transfer for a single image:
python main_generate_single_image.py --model_path_warper pretrained/warper.pt --model_path_styler pretrained/styler.pt --input_path images/Meg Ryan/P00015.jpg --generate_num 5 --scale 1.0
The above command will translate the input photo into 5 caricatures with different exaggerations and styles:
Pretrained Models
The pre-trained models are shared here.
Citation
If you use this code for your research, please cite our paper.
@article{gu2020carime,
title={CariMe: Unpaired Caricature Generation with Multiple Exaggerations},
author={Gu, Zheng and Dong, Chuanqi and Huo, Jing and Li, Wenbin and Gao, Yang},
journal={arXiv preprint arXiv:2010.00246},
year={2020}
}