Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Related tags

Deep Learning ArTIST
Overview

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021)

Pytorch implementation of the ArTIST motion model. In this repo, there are

  • Training script for the Moving Agent network
  • Training script for the ArTIST motion model
  • Demo script for Inferring the likelihood of current observations (detections)
  • Demo script for Inpainting the missing observation/detections

Demo 1: Likelihood estimation of observation

Run:

python3 demo_scoring.py

This will generate the output in the temp/ar/log_p directory, look like this: scoring demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of clusters.

The model then evaluates the log-likelihood (lower the better) of all detections as the continuation of the observed sequence.

Demo 2: Sequence inpainting

Run:

python3 demo_inpainting.py

This will generate the multiple plauusible continuations of an observed motion, stored in the temp/ar/inpainting directory. One example looks like this: inpainting demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of samples we wish to generate.

For each generated future sequence, it computes the IoU between the last generated bounding box and the last groundtruth bounding box, as well as the mean IoU for the entire generated sequence and the groundtruth sequence.

Utilities

In this repo, there are a number of scripts to generate the required data to train/evaluate ArTIST.

  • prepare_data: Given the annotations of a dataset (e.g., MOT17), it extracts the motion sequences as well as the IDs of the social tracklets living the life span of the corresponding sequence, and stores it as a dictionary. If there are multiple tracking datasets that you wish to combine, you can use the merge_datasets() function inside this script.
  • clustering: Given the output dictionary of prepare_data script, this script performs the K-Means clustering and stores the centroids which are then used in the ArTIST model.
  • dataloader_ae and dataloader_ar: Given the post-processes version of the dataset dictionary (which can be done by running the post_process script), these two scripts define the dataloaders for training the MA-Net and ArTIST. Note that the dataloader of ArTIST uses the MA-Net to compute the social information. This can also be done jointly in an end-to-end fashion, which we observed almost no difference.
  • create_demo_test_subset: In order to run the demo scripts, you need to run this script. However, the demo test subset has been produced and stored in data/demo_test_subset.npy.

Data

You can download the required data from the Release and put it in data/ directory.

Citation

If you find this work useful in your own research, please consider citing:

@inproceedings{saleh2021probabilistic,
author={Saleh, Fatemeh and Aliakbarian, Sadegh and Rezatofighi, Hamid and Salzmann, Mathieu and Gould, Stephen},
title = {Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
year = {2021}
}
You might also like...
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

 A New Approach to Overgenerating and Scoring Abstractive Summaries
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

The code for our paper
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
Comments
  • Re-creating paper results

    Re-creating paper results

    Did you use implement the ArTIST paradigm in the SORT algorithm to achieve the results in your paper? If so, do you have an example of integrating the ArTIST motion model with SORT? I am trying to re-create the results of the paper.

    How do I re-create the results you obtained in your paper?

    opened by vineetrshenoy 1
  • dataloader.py: shape mismatch

    dataloader.py: shape mismatch

    when i use dataloader.py to load the data, here comes a error:could not broadcast input array from shape (2) into shape (4) in line 33 of dataloader.py, I wonder how to fix the bug and what is the data format in data/postp_combined_path_mot_train.npy, thanks for your help.

    opened by guileihu 0
Releases(data-release)
Owner
Fatemeh
Fatemeh
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 3, 2023
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 5, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

null 44 Dec 9, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 9, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 4, 2023
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

null 54 Oct 15, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

null 348 Jan 7, 2023