Free course that takes you from zero to Reinforcement Learning PRO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½

Overview

The Hands-on Reinforcement Learning course πŸš€

From zero to HERO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½

Out of intense complexities, intense simplicities emerge.

-- Winston Churchill

Contents

Welcome to the course πŸ€— ❀️

Welcome to my step by step hands-on-course that will take you from basic reinforcement learning to cutting-edge deep RL.

We will start with a short intro of what RL is, what is it used for, and how does the landscape of current RL algorithms look like.

Then, in each following chapter we will solve a different problem, with increasing difficulty:

  • πŸ† easy
  • πŸ† πŸ† medium
  • πŸ† πŸ† πŸ† hard

Ultimately, the most complex RL problems involve a mixture of reinforcement learning algorithms, optimizations and Deep Learning techniques.

You do not need to know deep learning (DL) to follow along this course.

I will give you enough context to get you familiar with DL philosophy and understand how it becomes a crucial ingredient in modern reinforcement learning.

Lectures

  1. Introduction to Reinforcement Learning
  2. Q-learning to drive a taxi πŸ†
  3. SARSA to beat gravity πŸ†
  4. Parametric Q learning to keep the balance πŸ’ƒ πŸ†
  5. Policy gradients to land on the Moon πŸ†

Wanna contribute?

There are 2 things you can do to contribute to this course:

  1. Spread the word and share it on Twitter, LinkedIn

  2. Open a pull request to fix a bug or improve the code readability.

Thanks ❀️

Special thanks to all the students who contributed with valuable feedback and pull requests ❀

Let's connect!

πŸ‘‰πŸ½ Subscribe to the datamachines newsletter.

πŸ‘‰πŸ½ Follow me on Medium, Twitter, LinkedIn

You might also like...
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

Computer Vision Script to recognize first person motion, developed as final project for the course
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

 Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

PyTorch implementation of 1712.06087
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

[ICCV 2021]  Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Comments
  • Merge from AnthonyLapadula/hands-on-rl

    Merge from AnthonyLapadula/hands-on-rl

    Main changes:

    • Updated hparams in 03_cart_pole/notebooks/07_deep_q_agent_good_hyperparameters.ipynb (and left the old ones for comparison)
    • A few fixes for bugs that may only show up on my environment
      • Biggest changes were to get animations working
    • Fixed a few typos
    • Tweaks to .gitignore
    • Tried to clarify various README.md files, but probably failed
    • Removed a few unused imports to reduce required package set
    opened by AnthonyLapadula 1
  • Lapadula 149 threshold to halt search

    Lapadula 149 threshold to halt search

    Main change is to 03_cart_pole/notebooks/09_hyperparameter_search.ipynb. Added Optuna callback to stop hyperparameter search when the perfect mean reward is reached.

    Only other non-trivial change is to comment out hparams['nn_hidden_layers'] = eval(hparams['nn_hidden_layers']) in that same file.

    opened by AnthonyLapadula 0
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 7, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

null 1 Jan 6, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

null 213 Dec 17, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 9, 2023
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley [email protected]

Sean Higley 1 Feb 23, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022