QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Overview

QuickAI logo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Announcement video https://www.youtube.com/watch?v=kK46sJphjIs

Motivation

When I started to get into more advanced Machine Learning, I started to see how these famous neural network architectures(such as EfficientNet), were doing amazing things. However, when I tried to implement these architectures to problems that I wanted to solve, I realized that it was not super easy to implement and quickly experiment with these architectures. That is where QuickAI came in. It allows for easy experimentation of many model architectures quickly.

Dependencies:

Tensorflow, PyTorch, Sklearn, Matplotlib, Numpy, and Hugging Face Transformers. You should install TensorFlow and PyTorch following the instructions from their respective websites.

Why you should use QuickAI

QuickAI can reduce what would take tens of lines of code into 1-2 lines. This makes fast experimentation very easy and clean. For example, if you wanted to train EfficientNet on your own dataset, you would have to manually write the data loading, preprocessing, model definition and training code, which would be many lines of code. Whereas, with QuickAI, all of these steps happens automatically with just 1-2 lines of code.

The following models are currently supported:

  1. Image Classification

    • EfficientNet B0-B7
    • VGG16
    • VGG19
    • DenseNet121
    • DenseNet169
    • DenseNet201
    • Inception ResNet V2
    • Inception V3
    • MobileNet
    • MobileNet V2
    • MobileNet V3 Small & Large
    • ResNet 101
    • ResNet 101 V2
    • ResNet 152
    • ResNet 152 V2
    • ResNet 50
    • ResNet 50 V2
    • Xception
  2. Natural Language Processing

    • GPT-NEO 125M(Generation, Inference)
    • GPT-NEO 350M(Generation, Inference)
    • GPT-NEO 1.3B(Generation, Inference)
    • GPT-NEO 2.7B(Generation, Inference)
    • Distill BERT Cased(Q&A, Inference and Fine Tuning)
    • Distill BERT Uncased(Named Entity Recognition, Inference)
    • Distil BART (Summarization, Inference)
    • Distill BERT Uncased(Sentiment Analysis & Text/Token Classification, Inference and Fine Tuning)

Installation

pip install quickAI

How to use

Please see the examples folder for details.

Issues/Questions

If you encounter any bugs, please open a new issue so they can be corrected. If you have general questions, please use the discussion section.

Comments
  • Memory error

    Memory error

    Is it possible to host the gpt neo models on a website and make some kind of API, the models are to large to run on my computer. Also It would be nice if to have a stop function so the model knows at what token to stop and be able to add examples of the query needed.

    enhancement 
    opened by TheProtaganist 5
  • Add link to a demo

    Add link to a demo

    Hi, I tried using the notebook in the example folder but it wasn't working (I think the files were not imported into Colab), so I created a demo which should work.

    opened by equiet 1
  • Better code for image_classification.py

    Better code for image_classification.py

    Main change: Used a dict instead of excessive elifs. Other smaller changes.

    Important: I do not have the resources to test the code, but technically, it's just a rewrite of the original, so it should work.

    opened by pinjuf 1
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires numpy, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade ubuntu from 21.10 to jammy

    [Snyk] Security upgrade ubuntu from 21.10 to jammy

    This PR was automatically created by Snyk using the credentials of a real user.


    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:jammy, as this image has only 10 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 514 | Out-of-bounds Read
    SNYK-UBUNTU2110-E2FSPROGS-2770726 | No Known Exploit | | medium severity | 300 | NULL Pointer Dereference
    SNYK-UBUNTU2110-KRB5-1735754 | No Known Exploit | | medium severity | 300 | OS Command Injection
    SNYK-UBUNTU2110-OPENSSL-2933132 | No Known Exploit | | medium severity | 300 | Inadequate Encryption Strength
    SNYK-UBUNTU2110-OPENSSL-2941384 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by geekjr 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from rolling to 21.10

    [Snyk] Security upgrade ubuntu from rolling to 21.10

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:21.10, as this image has only 12 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Issue | Exploit Maturity | | :------: | :---- | :--------------- | | medium severity | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | NULL Pointer Dereference
    SNYK-UBUNTU2110-TAR-1744334 | No Known Exploit | | medium severity | CVE-2018-25032
    SNYK-UBUNTU2110-ZLIB-2433596 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from 18.04 to rolling

    [Snyk] Security upgrade ubuntu from 18.04 to rolling

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:rolling, as this image has only 13 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU1804-PERL-1930908 | No Known Exploit | | low severity | 150 | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU1804-SHADOW-306209 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 471/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.19.5 -> 1.22.0
    | No | No Known Exploit low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.1 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3180412 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 441/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.1 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3113904 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
Releases(2.0.0)
Owner
null
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

null 349 Dec 8, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija TerΕ‘ek 39 Dec 28, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 6, 2023
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

TuZheng 405 Jan 4, 2023
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle ?? PaddlePaddle Visual Transformers (PaddleViT or

null 1k Dec 28, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 3, 2023
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINOβ„’ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

null 63 Oct 17, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 1, 2023
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 8, 2023
πŸ˜‡A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).

null 3.4k Jan 4, 2023
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper Β· Huggingface Models Β· Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022