Learning Off-Policy with Online Planning, CoRL 2021

Related tags

Deep Learning LOOP
Overview

LOOP: Learning Off-Policy with Online Planning

Accepted in Conference of Robot Learning (CoRL) 2021.

Harshit Sikchi,   Wenxuan Zhou,   David Held


Paper

Install

File Structure

  • LOOP (Core method)
    • Training code (Online RL): train_loop_sac.py
    • Training code (Offline RL): train_loop_offline.py
    • Training code (safe RL): train_loop_safety.py
    • Policies (online/offline/safety): policies.py
    • ARC/H-step lookahead policy: controllers/
  • Environments: envs/
  • Configurations: configs/

Instructions

  • All the experiments are to be run under the root folder.
  • Config files in configs/ are used to specify hyperparameters for controllers and dynamics.
  • Please keep all the other values in yml files consistent with hyperparamters given in paper to reproduce the results in our paper.

Experiments

Sec 6.1 LOOP for Online RL

python train_loop_sac.py --env=<env_name> --policy=LOOP_SAC_ARC --start_timesteps=<initial exploration steps> --exp_name=<location_to_logs> 

Environments wrappers with their termination condition can be found under envs/

Sec 6.2 LOOP for Offline RL

Download CRR trained models from Link into the root folder.

python train_loop_offline.py --env=<env_name> --policy=LOOP_OFFLINE_ARC --exp_name=<location_to_logs>  --offline_algo=CRR --prior_type=CRR

Currently supported for d4rl MuJoCo locomotions tasks only.

Sec 6.3 LOOP for Safe RL

python train_loop_safety.py --env=<env_name> --policy=safeLOOP_ARC --exp_name=<location_to_logs> 

Safety environments can be found under envs/safety_envs.py

References

Parts of the codes are used from the references mentioned below:

@article{SpinningUp2018,
    author = {Achiam, Joshua},
    title = {{Spinning Up in Deep Reinforcement Learning}},
    year = {2018}
}

https://github.com/Xingyu-Lin/mbpo_pytorch
You might also like...
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL). PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Simple streamlit app to demonstrate HERE Tour Planning
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. An all-in-one application to visualize multiple different local path planning algorithms
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

 GNPy: Optical Route Planning and DWDM Network Optimization
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Comments
  • Environment reproducibility

    Environment reproducibility

    Hi, I am trying to run your code. However, I am trying to get packages prepared on newest version and have been encountering errors such as with mpi4py which does not install correctly in my environment.

    Is it possible for you guys to provide a requirements.txt file for me to generate the python virtual environment that will set up the dependencies to run the code? Otherwise a container image such as docker will also be great!

    opened by pranjaldhole 0
Releases(v0.0.0)
Owner
Harshit Sikchi
Reinforcement Learning, Roboticist
Harshit Sikchi
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 2, 2021
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 6, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 4, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 6, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

null 19 Dec 12, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 5, 2023
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 3, 2023
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 3, 2023