Python implementation of "Elliptic Fourier Features of a Closed Contour"

Overview

PyEFD

Build and Test Documentation Status image image image

An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1].

Installation

pip install pyefd

Usage

Given a closed contour of a shape, generated by e.g. scikit-image or OpenCV, this package can fit a Fourier series approximating the shape of the contour.

General usage examples

This section describes the general usage patterns of pyefd.

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10)

The coefficients returned are the a_n, b_n, c_n and d_n of the following Fourier series representation of the shape.

The coefficients returned are by default normalized so that they are rotation and size-invariant. This can be overridden by calling:

from pyefd import elliptic_fourier_descriptors
coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=False)

Normalization can also be done afterwards:

from pyefd import normalize_efd
coeffs = normalize_efd(coeffs)

OpenCV example

If you are using OpenCV to generate contours, this example shows how to connect it to pyefd.

import cv2 
import numpy
from pyefd import elliptic_fourier_descriptors

# Find the contours of a binary image using OpenCV.
contours, hierarchy = cv2.findContours(
    im, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# Iterate through all contours found and store each contour's 
# elliptical Fourier descriptor's coefficients.
coeffs = []
for cnt in contours:
    # Find the coefficients of all contours
    coeffs.append(elliptic_fourier_descriptors(
        numpy.squeeze(cnt), order=10))

Using EFD as features

To use these as features, one can write a small wrapper function:

from pyefd import elliptic_fourier_descriptors

def efd_feature(contour):
    coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=True)
    return coeffs.flatten()[3:]

If the coefficients are normalized, then coeffs[0, 0] = 1.0, coeffs[0, 1] = 0.0 and coeffs[0, 2] = 0.0, so they can be disregarded when using the elliptic Fourier descriptors as features.

See [1] for more technical details.

Testing

Run tests with with Pytest:

py.test tests.py

The tests include a single image from the MNIST dataset of handwritten digits ([2]) as a contour to use for testing.

Documentation

See ReadTheDocs.

References

[1]: Frank P Kuhl, Charles R Giardina, Elliptic Fourier features of a closed contour, Computer Graphics and Image Processing, Volume 18, Issue 3, 1982, Pages 236-258, ISSN 0146-664X, http://dx.doi.org/10.1016/0146-664X(82)90034-X.

[2]: LeCun et al. (1999): The MNIST Dataset Of Handwritten Digits

Comments
  • Vectorized contour reconstruction function

    Vectorized contour reconstruction function

    Hope to contribute some more to this project with an extracted contour reconstruction function. Refactored tests accordingly. To compare reconstructed shapes I had to import a reliable hausdorff distance function, for which the scipy package was included in the test requirements.

    opened by reinvantveer 4
  • fix x/y swapping and add demo

    fix x/y swapping and add demo

    Hi,

    I noticed that in some places apparently the x/y dimension was mixed up and I attempted to fix this. As a test and demo, I added a few geometric figures to showcase this method.

    Best regards, Jonathan

    enhancement 
    opened by jonathanschilling 3
  • Method not robust to random index ?

    Method not robust to random index ?

    Hello,

    I wanted to test your method, I do not really know how does it works but it seems that how the point are indexed have some importance as I get strange result when the array is indexed differently ... Is there a way to resolve this ?

    Find below illustration of what I mean

    normal result when points are correctly ordered image

    abnormal result when points are randomly ordered image

    opened by julienguegan 3
  • Bad reconstruction results

    Bad reconstruction results

    Hi, now I'm writing the code that reconstructs the image from eft coefficienct @hbldh

    img_1 = np.array(
        [
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                64,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                64,
                127,
                64,
                64,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                127,
                255,
                255,
                191,
                64,
                0,
                0,
                0,
                0,
                0,
                64,
                127,
                127,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                0,
                0,
                0,
                64,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                64,
                0,
                0,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                64,
                0,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                127,
                0,
                0,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                191,
                127,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                127,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                191,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                127,
                255,
                255,
                191,
                64,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                0,
                0,
                0,
                64,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                127,
                0,
                0,
                0,
                64,
                191,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
            [
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
                255,
            ],
        ]
    )
    
    img_1 = np.uint8(img_1)
    edges = cv2.Canny(img_1,100,200)
    contour_2 = []
    
    for i in range(edges.shape[0]):
        for j in range(edges.shape[1]):
            if edges[i,j] == 255:
              contour_2.append([i,j])
    contour_2 = np.array(contour_2)
    
    cv2.imwrite('test1.png',img_1)
    
    coeffs = pyefd.elliptic_fourier_descriptors(contour_2, order=10, normalize=False)
    
    contour_2 = pyefd.reconstruct_contour(coeffs, locus=(0, 0), num_points=300)
    
    for i in range(contour_1.shape[0]):
        tmp[int(round(contour_1[i][0]))][int(round(contour_1[i][1]))] = 255
    print(tmp.shape)
    cv2.imwrite('test2.png',tmp)
    

    However, the result is not the supposed one. How can I fix my code to reconstruct the correct image?

    test1, reconstruction of img_1(test1.png) test2, reconstruction of edge test3, reconstruction from coeffs, (test2.png)

    opened by MADONOKOUKI 2
  • Error: operands could not be broadcast together with shapes (0,1,2) (10,0)

    Error: operands could not be broadcast together with shapes (0,1,2) (10,0)

    Hi, I am sending my contour sequence to your function to define properties using the opencv example in your readme file, but I get the following error. What is the reason?

    My code:

    import cv2 
    import numpy as np
    from pyefd import elliptic_fourier_descriptors
    
    def auto_canny(image, sigma=0.33):
    	# compute the median of the single channel pixel intensities
    	v = np.median(image)
    	# apply automatic Canny edge detection using the computed median
    	lower = int(max(0, (1.0 - sigma) * v))
    	upper = int(min(255, (1.0 + sigma) * v))
    	edged = cv2.Canny(image, lower, upper)
    	# return the edged image
    	return edged
    def efd_feature(contour):
        coeffs = elliptic_fourier_descriptors(contour, order=10, normalize=True)
        return coeffs.flatten()[3:]
    img = cv2.imread('C:/Users/Ogeday/image.jpg')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    retval,th = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV +cv2.THRESH_OTSU)
    cv2.imshow("thresolded",th);
    
    canny=auto_canny(th);
    
    cv2.imshow("cannied",canny);
    # Find the contours of a binary image using OpenCV.
    contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    # Iterate through all contours found and store each contour's 
    # elliptical Fourier descriptor's coefficients.
    coeffs = []
    for cnt in contours:
        # Find the coefficients of all contours
     coeffs.append(elliptic_fourier_descriptors(np.squeeze(cnt), order=10))
    
    efd=efd_feature(contours);
    print(efd);
    
    opened by OgedayOztekin 2
  • pyefd for 3D points

    pyefd for 3D points

    Hi!

    I wondered if I could use pyefd for generating the contour from 3D data points, where x, y, and z are the coordinates of a generic point. Do you have any suggestions?

    I really appreciate any help you can provide!

    opened by dalbenzioG 1
  • Feature request: normalize_efd function that also outputs angle and scale

    Feature request: normalize_efd function that also outputs angle and scale

    Thank you very much for this beautiful piece of software. For my purposes it would be great to also get the normalization angle and scale in order to store it alongside the descriptor for future lookups. Would it be possible to have a analogous function to normalize_efd that outputs those values and the normalized descriptor as a tuple?

    enhancement 
    opened by geloescht 1
  • Release/v1.5.0

    Release/v1.5.0

    Version 1.5.0

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.
    opened by hbldh 0
  • Create Dependabot config file

    Create Dependabot config file

    :wave: Dependabot is moving natively into GitHub! This pull request migrates your configuration from Dependabot.com to a config file, using the new syntax. When you merge this pull request, we'll swap out dependabot-preview (me) for a new dependabot app, and you'll be all set!

    With this change, you'll now use the Dependabot page in GitHub, rather than the Dependabot dashboard, to monitor your version updates. Dependabot is now configured exclusively using config files.

    If you've got any questions or feedback for us, please let us know by creating an issue in the dependabot/dependabot-core repository.

    Learn more about the relaunch of Dependabot

    Please note that regular @dependabot commands do not work on this pull request.

    :robot::yellow_heart:

    dependencies 
    opened by dependabot-preview[bot] 0
  • Dependabot couldn't authenticate with https://pypi.python.org/simple/

    Dependabot couldn't authenticate with https://pypi.python.org/simple/

    Dependabot couldn't authenticate with https://pypi.python.org/simple/.

    You can provide authentication details in your Dependabot dashboard by clicking into the account menu (in the top right) and selecting 'Config variables'.

    View the update logs.

    opened by dependabot-preview[bot] 0
  • Dependabot can't resolve your Python dependency files

    Dependabot can't resolve your Python dependency files

    Dependabot can't resolve your Python dependency files.

    As a result, Dependabot couldn't update your dependencies.

    The error Dependabot encountered was:

    ERROR: ERROR: Could not find a version that matches black
    Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    There are incompatible versions in the resolved dependencies.
    [pipenv.exceptions.ResolutionFailure]:       req_dir=requirements_dir
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 726, in resolve_deps
    [pipenv.exceptions.ResolutionFailure]:       req_dir=req_dir,
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 480, in actually_resolve_deps
    [pipenv.exceptions.ResolutionFailure]:       resolved_tree = resolver.resolve()
    [pipenv.exceptions.ResolutionFailure]:   File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 395, in resolve
    [pipenv.exceptions.ResolutionFailure]:       raise ResolutionFailure(message=str(e))
    [pipenv.exceptions.ResolutionFailure]:       pipenv.exceptions.ResolutionFailure: ERROR: ERROR: Could not find a version that matches black
    [pipenv.exceptions.ResolutionFailure]:       Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    [pipenv.exceptions.ResolutionFailure]: Warning: Your dependencies could not be resolved. You likely have a mismatch in your sub-dependencies.
      First try clearing your dependency cache with $ pipenv lock --clear, then try the original command again.
     Alternatively, you can use $ pipenv install --skip-lock to bypass this mechanism, then run $ pipenv graph to inspect the situation.
      Hint: try $ pipenv lock --pre if it is a pre-release dependency.
    ERROR: ERROR: Could not find a version that matches black
    Skipped pre-versions: 18.3a0, 18.3a0, 18.3a1, 18.3a1, 18.3a2, 18.3a2, 18.3a3, 18.3a3, 18.3a4, 18.3a4, 18.4a0, 18.4a0, 18.4a1, 18.4a1, 18.4a2, 18.4a2, 18.4a3, 18.4a3, 18.4a4, 18.4a4, 18.5b0, 18.5b0, 18.5b1, 18.5b1, 18.6b0, 18.6b0, 18.6b1, 18.6b1, 18.6b2, 18.6b2, 18.6b3, 18.6b3, 18.6b4, 18.6b4, 18.9b0, 18.9b0, 19.3b0, 19.3b0
    There are incompatible versions in the resolved dependencies.
    
    ['Traceback (most recent call last):\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 501, in create_spinner\n    yield sp\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 649, in venv_resolve_deps\n    c = resolve(cmd, sp)\n', '  File "/usr/local/.pyenv/versions/3.7.3/lib/python3.7/site-packages/pipenv/utils.py", line 539, in resolve\n    sys.exit(c.return_code)\n', 'SystemExit: 1\n']
    

    If you think the above is an error on Dependabot's side please don't hesitate to get in touch - we'll do whatever we can to fix it.

    You can mention @dependabot in the comments below to contact the Dependabot team.

    opened by dependabot-preview[bot] 0
  • Contour chain approximation

    Contour chain approximation "simple" is buggy or numerically instable

    Description

    I was running Fourier descriptors extraction on contours that naturally contain long straight lines. I used cv.CHAIN_APPROX_SIMPLE as usual but was having weird results as if the method does not converge:

    image

    I tried storing the contour as cv.CHAIN_APPROX_NONE instead and it fixed the problem for all of my cases: image

    Minimal setup to reproduce:

    img = np.zeros((100,100), dtype=np.uint8)
    img = cv.rectangle(img, (25,25), (75,75), (255,255,255), -1)
    cnt, h = cv.findContours(img,cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
    coeffs = pyefd.elliptic_fourier_descriptors(cnt[0].reshape(-1,2), order=10, normalize=True)
    pyefd.plot_efd(coeffs)
    plt.show()
    
    img = np.zeros((100,100), dtype=np.uint8)
    img = cv.rectangle(img, (25,25), (75,75), (255,0,0), -1)
    cnt, h = cv.findContours(img,cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
    coeffs = pyefd.elliptic_fourier_descriptors(cnt[0].reshape(-1,2), order=10, normalize=True)
    pyefd.plot_efd(coeffs)
    plt.show()
    

    I get: image image

    opened by MikeTkachuk 0
  • RuntimeWarning: invalid value encountered in true_divide

    RuntimeWarning: invalid value encountered in true_divide

    Some specific contour leads to a warning and to NaN due to division by 0.

    from pyefd import elliptic_fourier_descriptors
    import numpy as np
    
    contour = np.array([(0.0007365261134166801, 0.0008592751780890362), (0.0011385481809349507, 0.0005073326831297464), (0.0016015060818268534, 0.00024058327913523136), (0.002107608603590938, 6.927799610623175e-05), (0.002637406510141327, 0.0), (0.003170539965043462, 3.5411605355473164e-05), (0.0036865209486098838, 0.00017415196403836042), (0.0036865209486098838, 0.00017415196403836042), (0.003301593851628093, 0.0011941724608851567), (0.003301593851628093, 0.0011941724608851567), (0.0029920052614881287, 0.001110928245675824), (0.002672125188546981, 0.0010896812824625624), (0.002354246444616681, 0.0011312480801257685), (0.002050584931558297, 0.0012340312499438122), (0.0017728101910231553, 0.001394080892339833), (0.001531596950512193, 0.0016052463893156954), (0.0013362148995842427, 0.001859412769243729), (0.0011941724608850457, 0.0021468125606828314), (0.001110928245675491, 0.0024564011508226846), (0.0010896812824621183, 0.0027762812237640544), (0.0011312480801258795, 0.003094159967693799), (0.001234031249943368, 0.0033978214807524054), (0.001394080892340055, 0.003675596221287547), (0.0016052463893154734, 0.003916809461798509), (0.00185941276924384, 0.004112191512726571), (0.0021468125606826094, 0.004254233951425768), (0.0017618854637007075, 0.005274254448272675), (0.0012828858113027586, 0.005037517050440643), (0.0008592751780888142, 0.0047118802988938), (0.0005073326831298575, 0.004309858231375752), (0.0002405832791353424, 0.003846900330483627), (6.927799610623175e-05, 0.0033407978087195422), (0.0, 0.0028109999021695975), (3.5411605355584186e-05, 0.0022778664472672405), (0.0001741519640382494, 0.0017618854637008186), (0.00041088936187017033, 0.0012828858113032027), (0.0007365261134166801, 0.0008592751780890362)])
    y = elliptic_fourier_descriptors(contour, order=3, normalize=False)
    print(y)
    

    will give the following output :

    [[nan nan nan nan] [nan nan nan nan] [nan nan nan nan]] /usr/local/lib/python3.7/dist-packages/pyefd.py:67: RuntimeWarning: invalid value encountered in true_divide a = consts * np.sum((dxy[:, 0] / dt) * d_cos_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:68: RuntimeWarning: invalid value encountered in true_divide b = consts * np.sum((dxy[:, 0] / dt) * d_sin_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:69: RuntimeWarning: invalid value encountered in true_divide c = consts * np.sum((dxy[:, 1] / dt) * d_cos_phi, axis=1) /usr/local/lib/python3.7/dist-packages/pyefd.py:70: RuntimeWarning: invalid value encountered in true_divide d = consts * np.sum((dxy[:, 1] / dt) * d_sin_phi, axis=1)


    Any idea how to fix this ?

    Or how to work-around this ?

    opened by ghost 3
  • Descriptors not consistent across cycled contour indices

    Descriptors not consistent across cycled contour indices

    Description

    I am trying to create invariant descriptors for the same silhouettes at different rotation angles.

    What I Did

    Created rotated copies of the same picture. Ran skimage.measure.find_contours() on it to extract a contour and pyefd.elliptic_fourier_descriptors(normalize=True) on the result. Expected output: Equal with some margin of error for differently rotated copies. Actual output: Result is only sometimes equal.

    Unfortunately my code is spread over several source files and depends on data, so I cannot easily share an example of what I am actually doing. But here is a function that, when inserted into tests.py will result in a failed test:

    def test_normalizing_4():
        contour_2 = np.roll(contour_1[:-1,:], 40, axis=0)
        contour_2 = np.append(contour_2, [contour_2[0]], axis=0)
        c1 = pyefd.elliptic_fourier_descriptors(contour_1, normalize=True)
        c2 = pyefd.elliptic_fourier_descriptors(contour_2, normalize=True)
        np.testing.assert_almost_equal(c1, c2, decimal=12)
    

    The reason for this behaviour is actually mentioned in the original paper in chapter 5.1 and figure 8: For every shape there are two possible classifications, each rotated along one of the two semi-major axes (rotated 180 degrees from each other). It seems like pyefd chooses one of them based on the location of the first point in the contour.

    There might be two solutions to this, firstly to return both classifications or to choose one of them (more) consistently by examining higher harmonic content of the descriptor. Note that the (near-)circular case also exists as outlined in the paper in chapter 5.2, so returning multiple descriptors and normalisation parametres might be required anyway for contours with rotational symmetry.

    bug enhancement help wanted 
    opened by geloescht 2
Releases(v1.6.0)
  • v1.6.0(Dec 9, 2021)

    Version 1.6.0 (2021-12-09)

    Added

    • Added a demo for 3D surfaces with cylindrical symmetries. (examples/example1.py)

    Fixes

    • Fixes incorrectly plotted curves when no imshow has been called.
    • Fixes ugly coefficient calculation code.
    Source code(tar.gz)
    Source code(zip)
  • v1.5.1(Jan 22, 2021)

    1.5.1 (2021-01-22)

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.

    Removed

    • Removed example script which did not work anymore.
    Source code(tar.gz)
    Source code(zip)
  • v.1.5.1-2(Jan 22, 2021)

    1.5.1 (2021-01-22)

    Added

    • return_transformation keyword on elliptic_fourier_descriptors method. Merged #11. Fixes #5.

    Fixes

    • Documentation correction. Merged #12.

    Removed

    • Removed example script which did not work anymore.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.1(Sep 28, 2020)

  • v0.1.0(Feb 9, 2016)

Owner
Henrik Blidh
Mathematician, Python programmer and Pointless Projecteer.
Henrik Blidh
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

null 157 Dec 26, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 8, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 4, 2023
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 2, 2023
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 5, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 6, 2023
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 7, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 3, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

null 2 May 19, 2022